اثر دما و زمان نگهداری بر فعالیت زیستی و پایداری فیزیکوشیمیایی نانووزیکول‌های حاوی پروتئین هیدرولیز شده‌ی گرده زنبور عسل

نویسندگان
1 استاد، گروه علوم وصنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران
2 دانشیار، گروه علوم دامی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده
در این مطالعه، اثر دما و زمان نگهداری بر فعالیت زیستی و پایداری فیزیکوشیمیایی نانووزیکول­های (لیپوزومها و نیوزومها) حاوی پروتئین هیدرولیز شده­ی گرده زنبور عسل حاصل از آنزیم آلکالاز و پپسین ارزیابی شد. از کیتوزان 2/0 درصد برای پوشش­دهی نانولیپوزوم­ها استفاده گردید. قدرت مهار رادیکالDPPH، قدرت احیا کنندگی یون آهن ، قدرت مهار ACE ، اندازه ذرات، شاخص بس­پاشیدگی، پتانسیل زتا، بازدهی ریزپوشانی و میزان رهایش پروتئین­های هیدرولیز شده از نانووزیکول­ها در مدت 28 روز نگهداری در دمای یخچال و محیط بررسی­شد. نتایج DLS نشان ­داد اندازه نانووزیکول­ها با بارگیری با پروتئین­ هیدرولیز­شده و پوشش­دهی ­با کیتوزان افزایش معنی­دار یافت (P<0.05). نانولیپوزوم­های حاوی­ پوشش­کیتوزان بیشترین­مقدار PDI را داشتند. پتانسیل­زتای نانووزیکول­ها با پوشش­دهی ­با­­ کیتوزان، به بیشترین ­مقدار رسید. نانولیپوزوم­های حاوی پوشش­کیتوزان بیشترین بازدهی ریزپوشانی را داشتند. بعد از 28 روز اندازه نانووزیکول­های با­ پوشش و بدون ­پوشش، 2 تا 26 برابر افزایش­ یافتند. میزان بازدهی­ریزپوشانی نانونیوزوم­ها و نانولیپوزوم­های بدون ­پوشش به­ ترتیب کمترین و بیشترین کاهش را نشان­ دادند. مقادیر فاکتور­های اندازه­گیری شده در طول نگهداری در دمای ­یخچال، به طور معنی­داری کمتر ­از دمای­ محیط بود (P<0.05). با بارگذاری ­پروتئین­های هیدرولیز­شده در نانووزیکول­ها و پوشش­دهی­آنها با­ کیتوزان از کاهش ­فعالیت ­آنتی­اکسیدانی­شان در طول مدت 28 روز نگهداری جلوگیری شد. میزان فعالیت مهارACE در نانولیپوزوم­ها به­طور معنی­داری کمتر از نانونیوزوم­ها بود (P<0.05). بعد از گذشت 28 روز در فعالیت مهار ACE هیدرولیز­شده­های بارگذاری شده در نانولیپوزوم­های بدون پوشش کیتوزان کاهش جزیی مشاهده گردید. این یافته­ها برای طراحی و توسعه غذاهای­کاربردی حاوی پروتئین ­هیدرولیز شده از اهمیت بالایی برخوردار است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of temperature and storage time on bioactivity and physicochemical stability of nanovesicles containing hydrolyzed bee pollen protein

نویسندگان English

Alireza Sadeghi Mahoonak 1
Hossein Mohebodini 2
1 Professor, Department of Food Sciences and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Iran
2 Associate Professor, Department of Animal Sciences, Mohaghegh Ardabili University, Ardabil, Iran.
چکیده English

In this study, the effect of temperature and storage time on biological activity and physicochemical stability of nanovesicles (liposomes and niosomes) containing bee pollen hydrolyzed protein obtained from alcalase and pepsin enzymatic hydrolysis was evaluated. 0.2% chitosan was used to coat nanoliposomes. DPPH radical scavenging power, ferric ion reducing power, ACE scavenging power, particle size, particle dispersion index, zeta potential, encapsulation efficiency and release rate of hydrolyzed proteins from nanovesicles during 28 days storage at refrigerator and ambient temperature were investigated. Results of DLS showed that the size of nanovesicles increased significantly by loading with hydrolyzed protein and coated with chitosan (P<0.05). Chitosan coated nanoliposomes had the highest amount of PDI. The zeta potential of nanovesicles reached the highest value by coating with chitosan. Chitosan coated nanoliposomes had the highest encapsulation efficiency. After 28 days, the size of coated and uncoated nanovesicles increased 2-26 times.The encapsulation efficiency of nanonisomes and uncoated nanoliposomes showed the lowest and highest decrease, respectively. The values of the measured factors during storage at the refrigerator were significantly lower than ambient temperature (P<0.05). The decline in the antioxidant activities of nanovesicles was significantly prevented by loading hydrolyzed proteins and coating the nanovesicles with chitosan. The ACE inhibition was lower in the nanoliposomes as compared with the nanoniosomes. After 28 days, the ACE inhibition activity of the loaded in nanoliposomes without coating chitosan decreased slightly. These findings are of great importance for designing and developing nutritious foods containing hydrolyzed protein.

کلیدواژه‌ها English

: Nanovesicles
Hydrolyzed protein
Bee pollen
Biological activity
Physicochemical stability
[1] Sarmadi, B. H., & Ismail, A. 2010. Antioxidative peptides from food proteins: a review. Peptides, 31, 10, 1949-1956.
[2] Maqsoudlou, A., Sadeghi Mahoonak, A., Mora, L., Mohebodini, H., Toldrá, F., & Ghorbani, M. 2019.Controlled enzymatic hydrolysis of pollen protein as promising tool for production of potential bioactive peptides. Journal of food biochemistry. DOI: 10.1111/jfbc.12819.
[3] Liu, W., Ye, A., Liu, W., Liu, C., Han, J. & Singh, H. 2015. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food chemistry, 175: 16-24.
[4] Mozafari, M.R., Khosravi-Darani, K., Borazan, G.G., Cui, J., Pardakhty, A. & Yurdugul, S. 2008. Encapsulation of Food Ingredients Using Nanoliposome Technology. Int. Journal of Food Properties, 11: 833-844.
[5] Sarabandi, K., Sadeghi Mahoonak, A., Hamishehkar, H., Ghorbani, M. & Jafari, S. M. 2019. Protection of casein hydrolysates within nanoliposomes: Antioxidant and stability characterization. Journal of Food Engineering, 251: 19–28.
[6] Hasani, S., Shahidi, M. & Ojagh, S. M. 2019. The Production and Evaluation of Nanoliposomes Containing Bioactive Peptides Derived from Fish Wastes Using the Alkalase Enzyme. Journal of Research and Innovation in Food Science and Technology, 8 (1):31-44.
[7] Folmer Corrêa, A. P., Bertolini, P., Almeida Lopes, N., Fonseca Veras, F., Gustavo, G. & Brandelli, A. 2019. Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates LWT - Food Science and Technology, 101: 107–112.
[8] Reyhani Poul, S. And Yeganeh, S. 2022. Physicochemical and antioxidant properties of chitosan-coated nanoliposome loaded with bioactive peptides produced from shrimp wastes hydrolysis. Iranian Journal of Fisheries Sciences. 21 (4) :987-1003
[9] Yousefi, M., Jafari, S. M., Ahangari, H., & Ehsani, A. 2021. Application of Nanoliposomes Containing Nisin and Crocin in Milk. Advanced Pharmaceutical Bulletin, 13(1), 134-142.
[10] Maqsoudlou, A., Sadeghi Mahoonak, A., Mohebodini , H., Koushki, V. 2020. Stability and structural properties of bee pollen protein hydrolysate microencapsulated using maltodextrin and whey proteinconcentrate. Heliyon. 6, e03371.
[11] Maqsoudlou, A., Mahoonak, A. S., Mora, L., Mohebodini, H., Toldrá, F., & Ghorbani, M. (2018). Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly. Food research international, 116, 905-915.
[12] Maqsoudlou, A., Sadeghi Mahoonak, A., Mora, L., Mohebodini, H., Toldrá, F., & Ghorbani, M. 2019.Controlled enzymatic hydrolysis of pollen protein as promising tool for production of potential bioactive peptides. Journal of food biochemistry. DOI: 10.1111/jfbc.12819.
[13] Diskaeva, E.I., Vecher, O.V., Bazikov, I. A. and Vakalov D. S. 2018. Particle size analysis of niosomes as a function of temperature. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 9 (2), 290-294.
[14] Mazloomi, S. N., Mahoonak, A. S., Ghorbani, M., & Houshmand, G. 2020. Physicochemical properties of chitosan-coated nanoliposome loaded with orange seed protein hydrolysate. Journal of Food Engineering, 280, 109976.
[15] Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F. & Arun Sharma, V. 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitor activity of peanut protein hydrolysate. Food Chemistry, 121, 178-184.
[16] Ramezanzade, L., Hosseini, S.F. & Nikkhah, M. 2017. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry, 234: 220-229.
[17] Mohan, A., Rajendran, S.R., He, Q.S., Bazinet, L. & Udenigwe, C.C. 2016. Encapsulation of food protein hydrolysates and peptides: a review. RSC Advances, 5: 79270-79278.
[18] Barani M, Mirzaei M, Torkzadeh-Mahani M, Lohrasbi-Nejad A, Nematollahi MH. 2020. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Materials Science & engineering. C, Materials for Biological Applications. DOI: 10.1016/j.msec.2020.110975. PMID: 32487392.
[19] García-Manrique, P., Machado, N. D., Fernández, M. A., Blanco-López, M. C., Matos, M., & Gutiérrez, G. 2020. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids and Surfaces B: Biointerfaces, 186, 110711.
[20] Bang, S., Hwang, I., Yu, Y., Kwon, H., Kim, D., & Park, H. J. 2011. Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Journal of Microencapsulation, 28(7), 595-604. doi:https://doi.org/10.3109/02652048.2011.557748.
[21] Zhiyu, L., Allan, T., Paulson,T., & Gill, A. 2015. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of Functional Foods, 19: 733–743.
[22] Hasibi, F., Nasirpour, A., Varshosaz, J., García‐Manrique, P., Blanco‐López, M. C., Gutiérrez, G., & Matos, M. 2020. Formulation and characterization of Taxifolin‐loaded lipid nanovesicles (Liposomes, Niosomes, and Transfersomes) for beverage fortification. European Journal of Lipid Science and Technology, 122(2), 1900105.
[23] Zavareze, E., Telles, A.C., El Halal, S.L.M., da Rocha, M., Colussi, R., de Assis, L.M., de Castro, L.A.S., Dias, A.R.G. & Prentice-Hernández, C. 2014. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT-Food Science and Technology, 59: 841-848.
[24] Tavano, L., Muzzalupo, R., Picci, N., & de Cindio, B. 2014. Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces, 114, 82-88.
[25] Akbari, J., Saeedi, M., Morteza-Semnani, K., Hashemi, S. M. H., Babaei, A., Eghbali, M., ... & Nokhodchi, A. 2022. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). Journal of Drug Targeting, 30(1), 108-117.
[26] Rostamkalaei, S. S., Akbari, J., Saeedi, M., Morteza-Semnani, K., & Nokhodchi, A. 2019. Topical gel of Metformin solid lipid nanoparticles: A hopeful promise as a dermal delivery system. Colloids and Surfaces B: Biointerfaces, 175, 150-157.
[27] Li, Z., Paulson, A. T. & Gill, T. A. 2015. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of functional food, 19: 733-743.
[28] da Silva Malheiros, P., Daroit, D.J., Brandelli, A., 2010. Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science and Technology. 21, 284292.
[29] Mosquera, M., Giménez, B., da Silva, I.M., Boelter, J.F., Montero, P., Gómez-Guillén, M.C. and Brandelli, A. 2014. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food chemistry, 156: 144-150.
[30] Rinaldi, F., Hanieh, P. N., Chan, L. K. N., Angeloni, L., Passeri, D., Rossi, M., ... & Marianecci, C. 2018. Chitosan glutamate-coated niosomes: a proposal for nose-to-brain delivery. Pharmaceutics, 10(2),
[31] Rezvani, M., Hesari, J., Peighambardoust, S. H., Manconi, M., Hamishehkar, H. & Escribano-Ferrer, E. 2019. Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach. Food Chemistry, 293: 368–377.
[32] Were, L.M., Bruce, B., Davidson, P.M. and Weiss, J. 2004. Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. Journal of Food Protection, 67: 922-927.
[33] Waddad, A. Y., Abbad, S., Yu, F., Munyendo, W. L., Wang, J., Lv, H., & Zhou, J. (2013). Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. International journal of pharmaceutics, 456(2), 446–458. https://doi.org/10.1016/j.ijpharm.2013.08.040
[34] Mohamad, E. A. and Fahmy, M. 2020.Niosomes and liposomes as promising carriers for dermal delivery of Annona squamosa extract. Brazilian Journal of Pharmaceutical Sciences.56: e18096. http://dx.doi.org/10.1590/s2175-97902019000318096.
[35] Bayindir, Z. S., & Yuksel, N. 2010. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of pharmaceutical sciences, 99(4), 2049–2060. https://doi.org/10.1002/jps.21944.
[36] Chang, H. I., & Yeh, M. K. (2012). Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. International journal of nanomedicine, 7, 49–60. https://doi.org/10.2147/IJN.S26766.
[37] Bartelds, R., Nematollahi, M. H., Pols, T., Stuart, M., Pardakhty, A., Asadikaram, G., & Poolman, B. 2018. Niosomes, an alternative for liposomal delivery. PloS one, 13(4), e0194179. https://doi.org/10.1371/journal.pone.0194179.
[38] Gibis, M., Thellmann, K., Thongkaew, C., Weiss, J.,2014. Interaction of polyphenols and multilayered liposomal-encapsulated grape seed extract with native and heat-treated proteins. Food Hydrocolloids.41, 119-131.
[39] Yamauchi, M., Tsutsumi, K., Abe, M., Uosaki, Y., Nakakura, M., & Aoki, N. 2007. Release of drugs from liposomes varies with particle size. Biological & Pharmaceutical Bulletin, 30, 963–966.
[40] Mazloom, M., Naderinezhad, S., Vahedian, F., Haghiralsadat, F., Daneshmand, F. 2018. Synthesize of nanoparticle-based surfactants containing Mentha piperita L. and Mentha pulegium L. essential oil in order to study the essential oil release and antioxidant activity. Iranian Journal of Medicinal and Aromatic Plants Research, 34(3), 359-379. doi: 10.22092/ijmapr.2018.110161.1997.
[41] Aguilar-Toalá, J. E., Quintanar-Guerrero, D., Liceaga, A. M., & Zambrano-Zaragoza, M. L. 2022. Encapsulation of bioactive peptides: a strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications. RSC advances, 12(11), 6449-6458.