[1] Sarmadi, B. H., & Ismail, A. 2010. Antioxidative peptides from food proteins: a review. Peptides, 31, 10, 1949-1956.
[2] Maqsoudlou, A., Sadeghi Mahoonak, A., Mora, L., Mohebodini, H., Toldrá, F., & Ghorbani, M. 2019.Controlled enzymatic hydrolysis of pollen protein as promising tool for production of potential bioactive peptides. Journal of food biochemistry. DOI: 10.1111/jfbc.12819.
[3] Liu, W., Ye, A., Liu, W., Liu, C., Han, J. & Singh, H. 2015. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food chemistry, 175: 16-24.
[4] Mozafari, M.R., Khosravi-Darani, K., Borazan, G.G., Cui, J., Pardakhty, A. & Yurdugul, S. 2008. Encapsulation of Food Ingredients Using Nanoliposome Technology. Int. Journal of Food Properties, 11: 833-844.
[5] Sarabandi, K., Sadeghi Mahoonak, A., Hamishehkar, H., Ghorbani, M. & Jafari, S. M. 2019. Protection of casein hydrolysates within nanoliposomes: Antioxidant and stability characterization. Journal of Food Engineering, 251: 19–28.
[6] Hasani, S., Shahidi, M. & Ojagh, S. M. 2019. The Production and Evaluation of Nanoliposomes Containing Bioactive Peptides Derived from Fish Wastes Using the Alkalase Enzyme. Journal of Research and Innovation in Food Science and Technology, 8 (1):31-44.
[7] Folmer Corrêa, A. P., Bertolini, P., Almeida Lopes, N., Fonseca Veras, F., Gustavo, G. & Brandelli, A. 2019. Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates LWT - Food Science and Technology, 101: 107–112.
[8] Reyhani Poul, S. And Yeganeh, S. 2022. Physicochemical and antioxidant properties of chitosan-coated nanoliposome loaded with bioactive peptides produced from shrimp wastes hydrolysis. Iranian Journal of Fisheries Sciences. 21 (4) :987-1003
[9] Yousefi, M., Jafari, S. M., Ahangari, H., & Ehsani, A. 2021. Application of Nanoliposomes Containing Nisin and Crocin in Milk. Advanced Pharmaceutical Bulletin, 13(1), 134-142.
[10] Maqsoudlou, A., Sadeghi Mahoonak, A., Mohebodini , H., Koushki, V. 2020. Stability and structural properties of bee pollen protein hydrolysate microencapsulated using maltodextrin and whey proteinconcentrate. Heliyon. 6, e03371.
[11] Maqsoudlou, A., Mahoonak, A. S., Mora, L., Mohebodini, H., Toldrá, F., & Ghorbani, M. (2018). Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly. Food research international, 116, 905-915.
[12] Maqsoudlou, A., Sadeghi Mahoonak, A., Mora, L., Mohebodini, H., Toldrá, F., & Ghorbani, M. 2019.Controlled enzymatic hydrolysis of pollen protein as promising tool for production of potential bioactive peptides. Journal of food biochemistry. DOI: 10.1111/jfbc.12819.
[13] Diskaeva, E.I., Vecher, O.V., Bazikov, I. A. and Vakalov D. S. 2018. Particle size analysis of niosomes as a function of temperature. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 9 (2), 290-294.
[14] Mazloomi, S. N., Mahoonak, A. S., Ghorbani, M., & Houshmand, G. 2020. Physicochemical properties of chitosan-coated nanoliposome loaded with orange seed protein hydrolysate. Journal of Food Engineering, 280, 109976.
[15] Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F. & Arun Sharma, V. 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitor activity of peanut protein hydrolysate. Food Chemistry, 121, 178-184.
[16] Ramezanzade, L., Hosseini, S.F. & Nikkhah, M. 2017. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry, 234: 220-229.
[17] Mohan, A., Rajendran, S.R., He, Q.S., Bazinet, L. & Udenigwe, C.C. 2016. Encapsulation of food protein hydrolysates and peptides: a review. RSC Advances, 5: 79270-79278.
[18] Barani M, Mirzaei M, Torkzadeh-Mahani M, Lohrasbi-Nejad A, Nematollahi MH. 2020. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Materials Science & engineering. C, Materials for Biological Applications. DOI: 10.1016/j.msec.2020.110975. PMID: 32487392.
[19] García-Manrique, P., Machado, N. D., Fernández, M. A., Blanco-López, M. C., Matos, M., & Gutiérrez, G. 2020. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids and Surfaces B: Biointerfaces, 186, 110711.
[20] Bang, S., Hwang, I., Yu, Y., Kwon, H., Kim, D., & Park, H. J. 2011. Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Journal of Microencapsulation, 28(7), 595-604. doi:https://doi.org/10.3109/02652048.2011.557748.
[21] Zhiyu, L., Allan, T., Paulson,T., & Gill, A. 2015. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of Functional Foods, 19: 733–743.
[22] Hasibi, F., Nasirpour, A., Varshosaz, J., García‐Manrique, P., Blanco‐López, M. C., Gutiérrez, G., & Matos, M. 2020. Formulation and characterization of Taxifolin‐loaded lipid nanovesicles (Liposomes, Niosomes, and Transfersomes) for beverage fortification. European Journal of Lipid Science and Technology, 122(2), 1900105.
[23] Zavareze, E., Telles, A.C., El Halal, S.L.M., da Rocha, M., Colussi, R., de Assis, L.M., de Castro, L.A.S., Dias, A.R.G. & Prentice-Hernández, C. 2014. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. LWT-Food Science and Technology, 59: 841-848.
[24] Tavano, L., Muzzalupo, R., Picci, N., & de Cindio, B. 2014. Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces, 114, 82-88.
[25] Akbari, J., Saeedi, M., Morteza-Semnani, K., Hashemi, S. M. H., Babaei, A., Eghbali, M., ... & Nokhodchi, A. 2022. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). Journal of Drug Targeting, 30(1), 108-117.
[26] Rostamkalaei, S. S., Akbari, J., Saeedi, M., Morteza-Semnani, K., & Nokhodchi, A. 2019. Topical gel of Metformin solid lipid nanoparticles: A hopeful promise as a dermal delivery system. Colloids and Surfaces B: Biointerfaces, 175, 150-157.
[27] Li, Z., Paulson, A. T. & Gill, T. A. 2015. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of functional food, 19: 733-743.
[28] da Silva Malheiros, P., Daroit, D.J., Brandelli, A., 2010. Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science and Technology. 21, 284292.
[29] Mosquera, M., Giménez, B., da Silva, I.M., Boelter, J.F., Montero, P., Gómez-Guillén, M.C. and Brandelli, A. 2014. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food chemistry, 156: 144-150.
[30] Rinaldi, F., Hanieh, P. N., Chan, L. K. N., Angeloni, L., Passeri, D., Rossi, M., ... & Marianecci, C. 2018. Chitosan glutamate-coated niosomes: a proposal for nose-to-brain delivery. Pharmaceutics, 10(2),
[31] Rezvani, M., Hesari, J., Peighambardoust, S. H., Manconi, M., Hamishehkar, H. & Escribano-Ferrer, E. 2019. Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach. Food Chemistry, 293: 368–377.
[32] Were, L.M., Bruce, B., Davidson, P.M. and Weiss, J. 2004. Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. Journal of Food Protection, 67: 922-927.
[33] Waddad, A. Y., Abbad, S., Yu, F., Munyendo, W. L., Wang, J., Lv, H., & Zhou, J. (2013). Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. International journal of pharmaceutics, 456(2), 446–458. https://doi.org/10.1016/j.ijpharm.2013.08.040
[34] Mohamad, E. A. and Fahmy, M. 2020.Niosomes and liposomes as promising carriers for dermal delivery of Annona squamosa extract. Brazilian Journal of Pharmaceutical Sciences.56: e18096. http://dx.doi.org/10.1590/s2175-97902019000318096.
[35] Bayindir, Z. S., & Yuksel, N. 2010. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of pharmaceutical sciences, 99(4), 2049–2060. https://doi.org/10.1002/jps.21944.
[36] Chang, H. I., & Yeh, M. K. (2012). Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. International journal of nanomedicine, 7, 49–60. https://doi.org/10.2147/IJN.S26766.
[37] Bartelds, R., Nematollahi, M. H., Pols, T., Stuart, M., Pardakhty, A., Asadikaram, G., & Poolman, B. 2018. Niosomes, an alternative for liposomal delivery. PloS one, 13(4), e0194179. https://doi.org/10.1371/journal.pone.0194179.
[38] Gibis, M., Thellmann, K., Thongkaew, C., Weiss, J.,2014. Interaction of polyphenols and multilayered liposomal-encapsulated grape seed extract with native and heat-treated proteins. Food Hydrocolloids.41, 119-131.
[39] Yamauchi, M., Tsutsumi, K., Abe, M., Uosaki, Y., Nakakura, M., & Aoki, N. 2007. Release of drugs from liposomes varies with particle size. Biological & Pharmaceutical Bulletin, 30, 963–966.
[40] Mazloom, M., Naderinezhad, S., Vahedian, F., Haghiralsadat, F., Daneshmand, F. 2018. Synthesize of nanoparticle-based surfactants containing Mentha piperita L. and Mentha pulegium L. essential oil in order to study the essential oil release and antioxidant activity. Iranian Journal of Medicinal and Aromatic Plants Research, 34(3), 359-379. doi: 10.22092/ijmapr.2018.110161.1997.
[41] Aguilar-Toalá, J. E., Quintanar-Guerrero, D., Liceaga, A. M., & Zambrano-Zaragoza, M. L. 2022. Encapsulation of bioactive peptides: a strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications. RSC advances, 12(11), 6449-6458.