بررسی خواص آنتی اکسیدانی پپتیدهای زیست فعال تخلیص شده از ضایعات حاصل از فرآوری ماهی هوور مسقطی(Katsuwonus pelamis)با استفاده از آنزیم های گوارشی پپسین و تریپسین

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 مرکز تحقیقات سلامت فرآورده‌های غذایی، دارویی و طبیعی، دانشگاه علوم پزشکی گلستان
3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه جهرم
چکیده
در صنایع فرآوری ماهی­ها­ 70-50 % ماهی اولیه به‌عنوان ضایعات تولید می‌شوند درحالیکه منابع غنی از پروتئین و آمینواسیدهای ضروری هستند. استفاده­ی بهینه از این ضایعات و تولید ترکیبات با ارزش افزوده­ی بالا که خواص سلامتی بخش قابل توجهی داشته باشند از چالش‌های مهم صنایع فرآوری ماهی‌ها است. در این پژوهش تاثیر شرایط هیدرولیز (زمان: 300-30 دقیقه و غلظت آنزیم 3-5/0 درصد) و نوع پروتئاز (پپسین و تریپسین) بر درجه هیدرولیز و ویژگی­های آنتی اکسیدانی (مهار رادیکال DPPH، شلاته کنندگی یون آهن، مهار رادیکال نیتریک اکسید، ظرفیت ضداکسایشی کل و احیاء کنندگی یون آهن) پروتئین هیدرولیز شده حاصل از امعاء و احشا ماهی هوور مسقطی با استفاده از روش سطح پاسخ ارزیابی شد. نتایج نشان داد که شرایط بهینه برای تولید پروتئین هیدرولیز شده با بیشترین ویژگی­های آنتی اکسیدانی با آنزیم‌های پپسین و تریپسین به­ترتیب عبارت بودند از: زمان هیدرولیز 09/179 و 62/143 دقیقه و غلظت آنزیم 63/2 و 94/1 درصد؛ در این شرایط درجه هیدرولیز پروتئین­های هیدرولیز شده­ی حاصل از فعالیت تریپسین بیشتر از پپسین محاسبه شد. مقایسه ویژگی­های آنتی اکسیدانی هیدرولیز شده­های حاصل از دوآنزیم مورد استفاده نشان داد که پروتئین هیدرولیز شده حاصل از تریپسین از پتانسیل آنتی اکسیدانی قوی­تری نسبت به پپسین برخوردار بود. بنابراین می­توان بیان نمود که پروتئین هیدرولیز شده امعاء احشا ماهی هوور مسقطی با استفاده از آنزیم تریپسین به­عنوان یک ترگیب سلامتی بخش و با ارزش افزوده بالا قابلیت کاربرد در تولید محصولات غذایی فراسودمند و مکمل­های سلامتی بخش برای ورزشکاران و افراد سالمند را دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation the antioxidant properties of purified bioactive peptides from the wastes of skipjack fish (Katsuwonus pelamis) processing, by pepsin and trypsin digestive enzymes

نویسندگان English

shima kaveh 1
Alireza Sadeghi Mahoonak 1
Vahid Erfani Moghadam 2
Mohammad Ghorbani 1
Aliakbar Gholamhosseinpour 3
Mojtaba Raeisi 2
1 Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Food, Drug and Natural Products Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
3 Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
چکیده English

In fish processing industries, 50-70% of primary fish are produced as waste, while they are rich sources of protein and essential amino acids. The optimal use of these wastes and the production of compounds with high added value that have significant health-giving properties is one of the important challenges of fish processing industries. In this research, the effect of hydrolysis conditions (time: 30-300 minutes and enzyme concentration 0.5-3%) and type of protease (pepsin and trypsin) on the degree of hydrolysis and antioxidant properties (DPPH radical scavenging activity, Fe chelating activity, No radical scavenging activity, total antioxidant capacity and Fe reducing power) of hydrolyzed protein obtained from Skipjack viscera were evaluated using response surface methodology. The results showed that the optimal conditions for the production of hydrolyzed protein with the maximum antioxidant properties with pepsin and trypsin enzymes were respectively: hydrolysis time of 179.09 and 143.62 minutes and enzyme concentration of 2.63 and 1.94 %; In this condition, the degree of hydrolysis of the hydrolyzed proteins resulting from the activity of trypsin was calculated to be higher than that of pepsin. Comparing the antioxidant properties of the hydrolysates obtained from the two enzymes used showed that the hydrolyzed protein obtained from trypsin had a stronger antioxidant potential than pepsin. Therefore, it can be stated that the hydrolyzed protein of the Skipjack viscera using trypsin enzyme as a health-giving supplement and with high added value can be used in the production of functional food products and health supplements for athletes and elderly people.

کلیدواژه‌ها English

Antioxidant
Pepsin
Bioactive peptides
Trypsin
Skipjack
1- Hotamisligil, G.S. and Erbay, E., 2008. Nutrient sensing and inflammation in metabolic diseases. Nature Reviews Immunology, 8(12), pp.923-934.
2- Llanas-Cornejo, D. and Husi, H., 2017. CVD and Oxidative Stress. Journal of Clinical Medicine, 6(2), pp.E22-E22.
3- Lammi, C., Aiello, G., Boschin, G. and Arnoldi, A., 2019. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods, 55, pp.135-145.
4- Kraus, A., 2015. Development of functional food with the participation of the consumer. Motivators for consumption of functional products. International Journal of Consumer Studies, 39(1), pp.2-11.
5- Lorenzo, J.M., Munekata, P.E., Gomez, B., Barba, F.J., Mora, L., Perez-Santaescolastica, C. and Toldra, F., 2018. Bioactive peptides as natural antioxidants in food products–A review. Trends in food science & technology, 79, pp.136-147.
6- Yang, X.R., Zhao, Y.Q., Qiu, Y.T., Chi, C.F. and Wang, B., 2019. Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Marine drugs, 17(2), p.78.
7- Kaveh, S., Mahoonak, A.S., Ghorbani, M. and Jafari, S.M., 2022. Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products, 182, p.114908.
8- Du, X., Jing, H., Wang, L., Huang, X., Wang, X. and Wang, H., 2022. Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. LWT, 159, p.113257
9- Fadimu, G.J., Farahnaky, A., Gill, H. and Truong, T., 2022. Influence of ultrasonic pretreatment on structural properties and biological activities of lupin protein hydrolysate. International Journal of Food Science & Technology, 57(3), pp.1729-1738.
10- Lafarga, T. and Hayes, M., 2014. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat science, 98(2), pp.227-239.
11- Rustad, T., 2003. Utilisation of marine by-products. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2(4), pp.458-463.
12- Szymczak, M., 2017. Recovery of cathepsins from marinating brine waste. International Journal of Food Science & Technology, 52(1), pp.154-160.
13- He, S., Franco, C. and Zhang, W., 2013. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), pp.289-297.
14- Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D. and Nasri, M., 2010. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food chemistry, 118(3), pp.559-565.
15- Ktari, N., Fakhfakh, N., Balti, R., Ben Khaled, H., Nasri, M. and Bougatef, A., 2013. Effect of degree of hydrolysis and protease type on the antioxidant activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. Journal of Aquatic Food Product Technology, 22(5), pp.436-448.
16- Chi, C.F., Wang, B., Wang, Y.M., Zhang, B. and Deng, S.G., 2015. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of functional foods, 12, pp.1-10.
17- Chotikachinda, R., Tantikitti, C., Benjakul, S., Rustad, T. and Kumarnsit, E., 2013. Production of protein hydrolysates from skipjack tuna (K atsuwonus pelamis) viscera as feeding attractants for A sian seabass (L ates calcarifer). Aquaculture Nutrition, 19(5), pp.773-784.
18- Nurdiayana, H., Mazlina, M.K.S. and Fadhilah, M.S.N., 2008. Optimization of protein extraction from freeze dried fish waste using response surface methodology (RSM). International Journal of Engineering and Technology, 5(1), pp.48-56.
19- Kaveh, S., Sadeghi, M.A., Ghorbani, M., Jafari, M. and Sarabandi, K., 2019. Optimization of factors affecting the antioxidant activity of fenugreek seed's protein hydrolysate by response surface methodology. Iranian Journal of Nutrition Sciences & Food Technology, 14(1).
20- Horwitz, W., 1975. Official methods of analysis (Vol. 222). Washington, DC: Association of Official Analytical Chemists.
21- Kruger, N.J., 2009. The Bradford method for protein quantitation. The protein protocols handbook, pp.17-24.
22- Alvand, M., Sadeghi Mahoonak, A., Ghorbani, M., Shahiri tabarestani, H., Kaveh, S., 2023. Effect of enzyme type and hydrolysis time on antioxidant properties of hydrolyzed turkmen melon seed protein. Journal of Innovation in Food Science and Technology (Iran), 15(3), pp. 99-112.
23- Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V. and Sharma, A., 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry, 121(1), pp.178-184.
24- Kaveh, S., Sadeghi Mahoonak, A. and Sarabandi, K., 2020. The Effect of Solvent Type, Time and Extraction Method on the Chemical Compositions and Antioxidant Activity of Eggplant Peel Extract. Karafan Quarterly Scientific Journal, 17(2), pp.135-150.
25- Tsai, P.J., Tsai, T.H., Yu, C.H. and Ho, S.C., 2007. Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea. Food chemistry, 103(1), pp.181-187.
26- Richardson, T., and Hyslop, D.B. 1985. Enzymes. Ch. 6 in Food Chemistry, O.R. Fennema (Ed.), p. 371-476. Marcel Dekker, Inc., New York.
27- Guérard, F., Guimas, L. and Binet, A.J.J.O.M.C.B.E., 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of molecular catalysis B: Enzymatic, 19, pp.489-498.
28- Sherafat, N., Motamedzadegan, A. and Safari, R., 2013. The effect of hydrolyzing time on cooked tuna fish (Skipjack tuna) wastes by alcalase on protein recovery and the hydrolysate molecular weight. Journal of Innovation in Food Science and Technology, 5(3).
29- You, L., Zhao, M., Cui, C., Zhao, H. and Yang, B., 2009. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science & Emerging Technologies, 10(2), pp.235-240.
30- Kaveh, S., Sadeghi, M. A., Ghorbani, M., Jafari, S. M., & Sarabandi, K. 2020. Antioxidant Properties of Fenugreek Bioactive Peptides Prepared with Pancreatin Enzyme. Food Engineering Research, 18(2), pp.103-122.
31- Zhu, K., Zhou, H. and Qian, H., 2006. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemistry, 41(6), pp.1296-1302.
32- Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. and Shahiri, H., 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), pp.238-242.
33- Khantaphant, S., Benjakul, S. and Ghomi, M.R., 2011. The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT-Food Science and Technology, 44(4), pp.1139-1148.
34- Ahmadi, H., Yeganeh, S. and Esmaeili Kharyeki, M., 2020. Investigation of antioxidant properties of hydrolyzed protein derived from Common carp (Cyprinus carpio) viscera. Journal of Fisheries, 73(4), pp.593-606.
35- Maqsoudlou, A., Sadeghi Mahoonak, A., Ghorbani, M. and Toldra, F., 2018. Optimization of Enzymatic Hydrolysis of Bee Pollen Protein by Pepsin Based on Antioxidant and ACE Inhibitory Activity and Comparison with Those of Royal Jelly. Research and Innovation in Food Science and Technology, 7(1), pp.49-64.
36- Oche, J.R.I., Johnson, T.O., Akinsanmi, A.O., Jaryum, K.H. and Francis, T., 2019. In vitro antioxidant activity and inhibition of Fe2+ and SNP lipid peroxidation of African Mistletoes (Tapinanthus globiferus) from three selected host plants in Jos Plateau State Nigeria. Journal of Applied Life Sciences International, 20(4), pp.1-10.
37- Kurozawa, L.E., Park, K.J. and Hubinger, M.D., 2008. Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. Journal of Food Science, 73(5), pp.C405-C412.
38- Pihlanto, A., 2006. Antioxidative peptides derived from milk proteins. International dairy journal, 16(11), pp.1306-1314.
39- Maqsoudlou, A., Sadeghi Mahoonak, A. R., Mohebodini, H. 2018. Evaluation of the antioxidant properties Hydrolyzed protein of bee pollen. Journal of food science and technology, 73(14), pp. 227-240.
40- Klompong, V., Benjakul, S., Kantachote, D. and Shahidi, F., 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry, 102(4), pp.1317-1327.
41- Bayram, T., Pekmez, M., Arda, N. and Yalçın, A.S., 2008. Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta, 75(3), pp.705-709.
42- Arabshahi-Delouee, S. and Urooj, A., 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food chemistry, 102(4), pp.1233-1240.
43- Mazloomi, S.N., Sadeghi Mahoonak, A. and Houshmand, G., 2019. Determination of optimum conditions for production of antioxidant Peptides derived from hydrolysis of orange seed protein with alkalase enzyme. Journal of food science and technology (Iran), 16(88), pp.343-356.
44- Amiri, S., Sowti Khiabani, M., Rezazadeh Bari, M. and Alizadeh, M., 2019. Development of the antioxidant activity in cheese whey and milk permeate using Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. Journal of food science and technology (Iran), 16(91), pp.65-79.
45- Ahn, C.B., Je, J.Y. and Cho, Y.S., 2012. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 49(1), pp.92-98.
46- Sadeghi Mahoonak, A.R. and Kaveh, S., 2022. Assessment of ACE-inhibitory and Antioxidant Activities of the Peptide Fragments from Pumpkin Seeds. Iranian Journal of Nutrition Sciences & Food Technology, 17(3), pp.45-56.
47- Shariat alavi, M., Sadeghi Mahoonak, A., Ghorbani, M., Alami, M., Mohammadzadeh, J., 2019. Determination of Optimum Conditions for Production of Hydrolyzed Protein with Antioxidant Capability and Decrease of Nitric Oxide from Tomato Wastes by Alcalas. Journal of food science and technology (Iran), 15 (84), pp.137-151.