سنتز سبز نانوکامپوزیت سه‌جزئی «Ag/AgCl/TiO2» با استفاده از گیاه آویشن شیرازی (Zataria Multiflora)

نویسندگان
گروه صنایع غذایی و تکنولوژی، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران، ایران
چکیده
شیمی سبز به دلیل مشارکت در سنتزهای غیرمعمول نانوذرات فلزی از عصاره های گیاهی، که دارای پتانسیل ضد میکروبی هستند، نقش مهمی دارد. بنابراین سنتز سبز نانوذرات از عصاره­های گیاهی راهی مناسب جهت تولید نانو ذرات می­باشد. بنابراین، هدف این پژوهش، سنتز سبزنانو کامپوزیت Ag/AgCl/TiO2 با استفاده از عصاره آویشن شیرازی، ارزیابی اندازه و مورفولوژی نانو ذرات تولید شده بود. به این منظور ابتدا به سنتز و مشخصه‌یابی نانوکامپوزیت سه‌جزئی Ag/AgCl/TiO2 با استفاده از گیاه آویشن شیرازی به کمک تکنیکهای دستگاههای UV-Vis، XRD، TEM، FTIR پرداخته شد. سپس ویژگی نانوکامپوزیت ها بررسی شد. نتایج نشان داد که بیشترین قطر هاله عدم رشد در تمامی باکتری­های مورد بررسی در نانو کامپوزیت حاوی 50 درصد کلر و در نانو کامپوزیت حاوی 5 درصد (Ag/TiO2mol) مشاهده می شود. قطر هاله عدم رشد با افزایش غلظت از 5/0 به 3 درصد در فیلم حاوی نانو ذرات TiO2/Ag/AgCl در تمام میکروارگانیسم­های مورد بررسی افزایش یافت. همچنین تصاویر TEM بارگذاری یکنواخت نانوذرات Ag/AgCl را روی سطح TiO2 نشان داد. به طور کلی نتایج به دست آمده بیانگر این‌ حقیقت‌ است‌ که‌ عصاره­ آویشن‌ در کنار نانوکامپوزیت های نقره و تیتانیوم دی اکسید، پتانسیل‌ بالایی‌ در تولید نانوذرات با خلوص بالا و در اندازه های نانومتری و با ویژگی های ضدمیکروبی و کاربرد در صنایع غذایی به عنوان پوشش و فیلم دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Green synthesis of three-component Ag/AgCl/TiO2 nanocomposite using Zataria Multiflora plant

نویسندگان English

sevil mohammadi
Hamed Ahari
Shima Yousefi
Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده English

Green synthesis plays an important role because of its involvement in unusual syntheses of metal nanoparticles from plant extracts, which have antimicrobial potential. Therefore, green synthesis of nanoparticles from plant extracts is a suitable way to produce nanoparticles. Therefore, the aim of this research was to synthesize Ag/AgCl /TiO2 three-component nanocomposite using Zataria Multiflora plant and evaluate the size and morphology of the produced nanoparticles. For this purpose, synthesis, and characterization of Ag/AgCl/TiO2, a three-component nanocomposite was done using Zataria Multiflora plant extract using UV-Vis, XRD, TEM, and FTIR techniques. Then, the characteristics of nanocomposites were investigated. The results showed that the largest diameter of the non-growth halo was observed in all studied bacteria in the nanocomposite containing 50% color and in the nanocomposite containing 5% (Ag/TiO2mol). The diameter of the non-growth halo increased from 0.5% to 3% in the film containing TiO2/Ag/AgCl nanoparticles in all investigated microorganisms. Also, TEM images showed the uniform loading of Ag/AgCl nanoparticles on the TiO2 surface. Overall, the obtained results showed that Zataria Multiflora plant extract, along with silver and titanium dioxide nanocomposites, has a high potential in producing nanoparticles with high purity, in nanometer sizes, with antimicrobial properties, which has properties in the food industry as a coating and film.

کلیدواژه‌ها English

Nanocomposite
silver nanoparticles
Titanium dioxide
Thyme
1. Muflikhun MA, Frommelt MC, Farman M, Chua AY, Santos GNC. Structures, mechanical properties and antibacterial activity of Ag/TiO2 nanocomposite materials synthesized via HVPG technique for coating application. Heliyon. 2019;5(4):e01475.
2. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, et al. Applications and implications of nanotechnologies for the food sector. Food additives and contaminants. 2008;25(3):241-58.
3. Oliani WL, Komatsu LGH, Lincopan N, Rangari VK, Lugao AB, Parra DF, editors. Processing and antimicrobial efficacy of polypropylene/montmorillonite/silver nanocomposites as food packaging films. AIP conference proceedings; 2016: AIP Publishing LLC.
4. Ghasemi S, Bari MR, Pirsa S, Amiri S. Use of bacterial cellulose film modified by polypyrrole/TiO2-Ag nanocomposite for detecting and measuring the growth of pathogenic bacteria. Carbohydrate polymers. 2020;232:115801.
5. Trinh ND, Nguyen TTB, Nguyen TH. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2015;6(4):045011.
6. Yang X, Fu H, Wang X, Yang J, Jiang X, Yu A. Synthesis of silver-titanium dioxide nanocomposites for antimicrobial applications. Journal of nanoparticle research. 2014;16(8):1-13.
7. Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020;10(9):1763.
8. Mondal P, Anweshan A, Purkait MK. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review. Chemosphere. 2020;259:127509.
9. Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Pharmacological effects of Zataria multiflora Boiss L. and its constituents focus on their anti‐inflammatory, antioxidant, and immunomodulatory effects. Fundamental & clinical pharmacology. 2018;32(1):26-50.
10. Mohiseni M, Sadeghian M, Nematdoost Haghi B, Bagheri D. Effects of dietary Shirazi thyme (Zataria multiflora Boiss) and vitamin E on growth and biochemical parameters in common carp (Cyprinus carpio). 2019.
11. Wang Y, Luo W, Tu Y, Zhao Y. Gelatin-Based Nanocomposite Film with Bacterial Cellulose–MgO Nanoparticles and Its Application in Packaging of Preserved Eggs. Coatings. 2021;11(1):39.
12. Ghasemi Z, Abdi V, Sourinejad I. Green fabrication of Ag/AgCl@ TiO2 superior plasmonic nanocomposite: Biosynthesis, characterization and photocatalytic activity under sunlight. Journal of Alloys and Compounds. 2020;841:155593.
13. Parashar V, Parashar R, Sharma B, Pandey AC. Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest Journal of Nanomaterials & Biostructures (DJNB). 2009;4(1).
14. Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and biosystems engineering. 2009;32(1):79-84.
15. Mehata MS. Green route synthesis of silver nanoparticles using plants/ginger extracts with enhanced surface plasmon resonance and degradation of textile dye. Materials Science and Engineering: B. 2021;273:115418.
16. Kumar S, Basumatary IB, Sudhani HP, Bajpai VK, Chen L, Shukla S, et al. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends in Food Science & Technology. 2021;112:651-66.
17. Srivastava A, Kulkarni A, Harpale P, Zunjarrao R. Plant mediated synthesis of silver nanoparticles using a bryophyte: Fissidens minutus and its anti-microbial activity. International Journal of Engineering Science and Technology. 2011;3(12).
18. Hassan F, Ali E, Mostafa N, Mazrou R. Shelf-life extension of sweet basil leaves by edible coating with thyme volatile oil encapsulated chitosan nanoparticles. International Journal of Biological Macromolecules. 2021;177:517-25.
19. Liu Z, Wang H, Wang Y, Lin Q, Yao A, Cao F, et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials. 2012;33(11):3093-106.
20. Liu T, Liu L. Fabrication and characterization of chitosan nanoemulsions loading thymol or thyme essential oil for the preservation of refrigerated pork. International Journal of Biological Macromolecules. 2020;162:1509-15.
21. Topala CM, Tataru LD. ATR-FTIR Study of thyme and rosemary oils extracted by supercritical carbon dioxide. Rev Chim(Bucharest). 2016;67:842-6.
22. Sotelo-Boyás ME, Valverde-Aguilar G, Plascencia-Jatomea M, Correa-Pacheco Z, Jiménez-Aparicio A, Solorza-Feria J, et al. Characterization of chitosan nanoparticles added with essential oils: In vitro effect on Pectobacterium carotovorum. Revista mexicana de ingeniería química. 2015;14(3):589-99.
23. Hamelian M, Varmira K, Veisi H. Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential. Journal of Photochemistry and Photobiology B: Biology. 2018;184:71-9.
24. Abolghasemi R, Haghighi M, Solgi M, Mobinikhaledi A. Rapid synthesis of ZnO nanoparticles by waste thyme (Thymus vulgaris L.). International Journal of Environmental Science and Technology. 2019;16(11):6985-90.
25. Kanniah P, Radhamani J, Chelliah P, Muthusamy N, Joshua Jebasingh Sathiya Balasingh Thangapandi E, Reeta Thangapandi J, et al. Green synthesis of multifaceted silver nanoparticles using the flower extract of Aerva lanata and evaluation of its biological and environmental applications. ChemistrySelect. 2020;5(7):2322-31.
26. Kumar DA, Palanichamy V, Roopan SM. Photocatalytic action of AgCl nanoparticles and its antibacterial activity. Journal of Photochemistry and Photobiology B: Biology. 2014;138:302-6.
27. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International journal of nanomedicine. 2020;15:2555.
28. Kashyap M, Samadhiya K, Ghosh A, Anand V, Shirage PM, Bala K. Screening of microalgae for biosynthesis and optimization of Ag/AgCl nano hybrids having antibacterial effect. RSC advances. 2019;9(44):25583-91.
29. Demirci S, Dikici T, Yurddaskal M, Gultekin S, Toparli M, Celik E. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Applied Surface Science. 2016;390:591-601.
30. Saravanakumar K, Chelliah R, Shanmugam S, Varukattu NB, Oh D-H, Kathiresan K, et al. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. Journal of Photochemistry and Photobiology B: Biology. 2018;185:126-35.
31. Jafarzadeh S, Salehabadi A, Nafchi AM, Oladzadabbasabadi N, Jafari SM. Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends in Food Science & Technology. 2021;116:218-31.
32. Pirsa S, Farshchi E, Roufegarinejad L. Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. Journal of Polymers and the Environment. 2020;28(12):3154-63.