[1] Sarraf, M., Jemni, M., Kahramanoğlu, I., Artés, F., Shahkoomahally, S., Namsi, A., ... & Rastogi, A. (2021). Commercial techniques for preserving date palm (Phoenix dactylifera) fruit quality and safety: A review. Saudi Journal of Biological Sciences, 28(8), 4408-4420. https://doi.org/10.1016/j.sjbs.2021.04.035
[2] Bagherzadeh Karimi, A., Elmi, A., Zargaran, A., Mirghafourvand, M., Fazljou, S. M. B., Araj-Khodaei, M., & Baghervand Navid, R. (2020). Clinical effects of date palm (Phoenix dactylifera L.): A systematic review on clinical trials. Complementary Therapies in Medicine, 51, 102429. https://doi.org/10.1016/j.ctim.2020.102429.
[3] Abu-Reidah, I. M., Gil-Izquierdo, Á., Medina, S., & Ferreres, F. (2017). Phenolic composition profiling of different edible parts and by-products of date palm (Phoenix dactylifera L.) by using HPLC-DAD-ESI/MSn. Food Research International, 100, 494-500. https://doi.org/10.1016/j.foodres.2016.10.018
[4] Eid, N. M., Al-Awadi, B., Vauzour, D., Oruna-Concha, M. J., & Spencer, J. P. (2013). Effect of cultivar type and ripening on the polyphenol content of date palm fruit. Journal of agricultural and food chemistry, 61(10), 2453-2460. https://doi.org/10.1021/jf303951e.
[5] Mohamed, R. M., Fageer, A. S., Eltayeb, M. M., & Mohamed Ahmed, I. A. (2014). Chemical composition, antioxidant capacity, and mineral extractability of S udanese date palm (Phoenix dactylifera L.) fruits. Food science & nutrition, 2(5), 478-489. https://doi.org/10.1002/fsn3.123.
[6] Sanjukta, S., Rai, A. K., Muhammed, A., Jeyaram, K., & Talukdar, N. C. (2015). Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. Journal of Functional Foods, 14, 650-658. https://doi.org/10.1016/j.jff.2015.02.033.
[7] Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry, 99(1), 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042.
[8] Benmeddour, Z., Mehinagic, E., Le Meurlay, D., & Louaileche, H. (2013). Phenolic composition and antioxidant capacities of ten Algerian date (Phoenix dactylifera L.) cultivars: a comparative study. Journal of Functional Foods, 5(1), 346-354. https://doi.org/10.1016/j.jff.2012.11.005.
[9] Daoud, A., Mnafgui, K., Turki, M., Jmal, S., Ayadi, F., ElFeki, A., bid, L., Rateb, M.E., Kadri, A. & Gharsallah, N. (2017). Cardiopreventive effect of ethanolic extract of date palm pollen against isoproterenol induced myocardial infarction in rats through the inhibition of the angiotensin-converting enzyme. Experimental and toxicologic pathology, 69(8), 656-665. https://doi.org/10.1016/j.etp.2017.06.004.
[10] Khosravi, A., Razavi, S. H., & Fadda, A. M. (2020). Advanced assessments on innovative methods to improve the bioaccessibility of polyphenols in wheat. Process Biochemistry, 88, 1-14. https://doi.org/10.1016/j.procbio.2019.09.005.
[11] Abbès, F., Kchaou, W., Blecker, C., Ongena, M., Lognay, G., Attia, H., & Besbes, S. (2013). Effect of processing conditions on phenolic compounds and antioxidant properties of date syrup. Industrial crops and products, 44, 634-642. https://doi.org/10.1016/j.indcrop.2012.09.008.
[12] Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., & Valéro, J. R. (2011). Solid-state fermentation of apple pomace using Phanerocheate chrysosporium–Liberation and extraction of phenolic antioxidants. Food Chemistry, 126(3), 1071-1080. https://doi.org/10.1016/j.foodchem.2010.11.129.
[13] Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2020). Ethanolic extraction of flavonoids, phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. Journal of King Saud University-Science, 32(1), 7-16. https://doi.org/10.1016/j.jksus.2017.08.001.
[14] Liu, Y. H., Lin, S. Y., Lee, C. C., & Hou, W. C. (2008). Antioxidant and nitric oxide production inhibitory activities of galacturonyl hydroxamic acid. Food chemistry, 109(1), 159-166. https://doi.org/10.1016/j.foodchem.2007.12.055.
[15] Mansouri, A., Embarek, G., Kokkalou, E., & Kefalas, P. (2005). Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food chemistry, 89(3), 411-420. https://doi.org/10.1016/j.foodchem.2004.02.051.
[16] Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003-1008. https://doi.org/10.1093/carcin/10.6.1003.
[17] Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and food Chemistry, 38(3), 674-677. https://doi.org/10.1021/jf00093a019.
[18] Saharan, P., Sadh, P. K., & Duhan, J. S. (2017). Comparative assessment of effect of fermentation on phenolics, flavanoids and free radical scavenging activity of commonly used cereals. Biocatalysis and Agricultural Biotechnology, 12, 236-240. https://doi.org/10.1016/j.bcab.2017.10.013.
[19] Nematallah, K. A., Ayoub, N. A., Abdelsattar, E., Meselhy, M. R., Elmazar, M. M., El-Khatib, A. H., Linscheid, M.W., Hathout, R.M., Godugu, K., Adel, A. & Mousa, S. A. (2018). Polyphenols LC-MS2 profile of Ajwa date fruit (Phoenix dactylifera L.) and their microemulsion: Potential impact on hepatic fibrosis. Journal of functional foods, 49, 401-411. https://doi.org/10.1016/j.jff.2018.08.032.
[20] Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valéro, J. R. (2011). Extraction and analysis of polyphenols: recent trends. Critical reviews in biotechnology, 31(3), 227-249. https://doi.org/10.3109/07388551.2010.513677.
[21] Izadifar, Z. (2013). Ultrasound pretreatment of wheat dried distiller’s grain (DDG) for extraction of phenolic compounds. Ultrasonics sonochemistry, 20(6), 1359-1369. https://doi.org/10.1016/j.ultsonch.2013.04.004.
[22] Zhong, X., Zhang, S., Wang, H., Yang, J., Li, L., Zhu, J., & Liu, Y. (2022). Ultrasound-alkaline combined extraction improves the release of bound polyphenols from pitahaya (Hylocereus undatus' Foo-Lon') peel: Composition, antioxidant activities and enzyme inhibitory activity. Ultrasonics Sonochemistry, 106213. https://doi.org/10.2139/ssrn.4222850.
[23] Sadh, P. K., Chawla, P., & Duhan, J. S. (2018). Fermentation approach on phenolic, antioxidants and functional properties of peanut press cake. Food bioscience, 22, 113-120. https://doi.org/10.1016/j.fbio.2018.01.011.
[24] Hachani, S., Hamia, C., Boukhalkhal, S., Silva, A. M., Djeridane, A., & Yousfi, M. (2018). Morphological, physico-chemical characteristics and effects of extraction solvents on UHPLC-DAD-ESI-MSn profiling of phenolic contents and antioxidant activities of five date cultivars (Phoenix dactylifera L.) growing in Algeria. NFS journal, 13, 10-22. https://doi.org/10.1016/j.nfs.2018.10.001.
[25] Sanou, A., Konaté, K., Kabakdé, K., Dakuyo, R., Bazié, D., Hemayoro, S., & Dicko, M.H. (2023). Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. Scientific Reports, 13(1), 358. https://doi.org/10.1038/s41598-023-27434-5.
[26] Islam, T., Yu, X., & Xu, B. (2016). Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT-Food Science and Technology, 72, 423-431. http://dx.doi.org/10.1016/j.lwt.2016.05.005.
[27] Sánchez-Vioque, R., Polissiou, M., Astraka, K., De Los Mozos-Pascual, M., Tarantilis, P., Herraiz-Peñalver, D., & Santana-Méridas, O. (2013). Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Industrial Crops and Products, 49,150-159. http://dx.doi.org/10.1016/j.indcrop.2013.04.053.
[28] Nagulendran, K.R., Velavan, S., Mahesh, R., & Begum, V.H. (2007). In vitro antioxidant activity and total polyphenolic content of Cyperus rotundus rhizomes. Journal of Chemistry, 4, 440-449.
[29] Xiao, Y., Xing, G., Rui, X., Li, W., Chen, X., Jiang, M., & Dong, M. (2014). Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. Journal of functional foods, 10, 210-222. https://doi.org/10.1016/j.jff.2014.06.008.