[1] Huang, Q., Yu, H., & Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science, 75(1), R50–R57.
[2] Nile, S. H., Baskar, V., Selvaraj, D. Nile, A., Xiao, J., & Kai, G. (2020). Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-Micro Letters, 12, 45.
[3] Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current opinion in colloid and interface science, 14(1), 3-15.
[4] Sauvant, P., Cansell, M., Sassi, A. H., & Atgié, C. (2012). Vitamin A enrichment: Caution with encapsulation strategies used for food applications. Food Research International, 46(2), 469-479.
[5] Keller, B. C. (2001). Liposomes in nutrition. Trends in Food Science and Technology, 12(1), 25–31.
[6] Neshastegir, M. H., Mohebi, M., & Hadad Khodaparast, M. H. (2018). Preparation nanoliposome containing orange essential oil using heat method. Journal of Innovation in Food Science and Technology, 10 (2), 115-122 [in Persian].
[7] Mozafari, M. R., Flanagan, J., Matia‐Merino, L., Awati, A., Omri, A., Suntres, Z. E., & Singh, H. (2006). Recent trends in the lipid‐based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86(13), 2038-2045.
[8] Mozafari, M. R. (2005). Liposomes: an overview of manufacturing techniques. Cellular and molecular biology letters, 10(4), 711–719.
[9] Taylor, T. M., Weiss, J., Davidson, P. M., & Bruce, B. D. (2005). Liposomal nano capsules in food science and agriculture. Critical reviews in Food science and Nutrition, 45(7-8), 587-605.
[10] Maherani, B., Arab-Tehrany, E., Mozafari, M.R., & Gaiani, C. and Linder, M. (2011). Liposomes: A Review of Manufacturing Techniques and Targeting Strategies. Current Nanoscience, 7(3), 436-452.
[11] Blanco-Padilla, A., Soto, K. M., Iturriaga, M. H., & Mendoza, S. (2014). Food antimicrobials nanocarriers. The Scientific World Journal, 2014, Article ID 837215.
[12] Mirhosseini, M. Kiany Harchegani, M., Kakai Dehkordi, S. Barzegary & Firouzabadi, F. (2013). Comparison of antibacterial effect of ZnO nanoparticles in apple juice at 25 and 4. Quarterly Journal of Experimental Animal Biology, 2 (3), 9-15 [in Persian].
[13] Emamifar, A., & Mohamadizadeh, M. (2020). Influence of sonication and antimicrobial packaging-based nano-ZnO on the quality of fresh strawberry juice during cold storage. Journal of Food Measurement and Characterization, 14 (6), 3280-3290.
[14] Dimapilis, E. A. S., Hsu, C. S., Mendoza, R. M. O., Lu, M. C. (2018). Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research, 28 (2), 47-56.
[15] Muthukrishnan, L. (2022). Nanonutraceuticals - challenges and novel nano-based carriers for effective delivery and enhanced bioavailability. Food and Bioprocess Technology, 15, 2155–2184.
[16] Rasti, B., Jinap, S., Mozafari, M. R., & Yazid, A. M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry, 135, 2761-2770.
[17] Cao, D., Shu, X., Zhu, D., Liang, S., Hasan, M., & Gong, S. (2020). Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. Nano Convergence, 7, 14.
[18] Momeni-Javid, Z, Hamishekar, H., Rahmati-Yamchi, M., Zarghami, N., Akbarzadeh, A. & Milani, M. (2017) Evaluation and study of antimicrobial activity of nanoliposomal meropenem against Pseudomonas aeruginosa isolates. Artificial Cells, Nanomedicine, and Biotechnology, 45 (5), 975-980.
[19] Avila, J. G., de Liverant, J. G., Martınez, A., Martınez, G., Munoz, J. L., Arciniegas, A., & de Vivar, A. R. (1999). Mode of action of Buddleja cordata verbascoside against Staphylococcus aureus. Journal of ethnopharmacology, 66(1), 75-78.
[20] Gortzi, O., Lala, S, Chinou, I., & Tsaknis, J. (2007). Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules. 12(5), 932–945.
[21] Tayle, A. A., El-tras, W. F., Moussa, Sh., El.bazi, A. F., Mahrous, H., Salem, M. F., and Brimer, L. (2011) Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. Journal of Food Safety, 31(2), 211-218.
[22] Li, H., Li, F., Wang, L., Sheng, J., Xin, Z., Zhao, L., Xiao, H., Zheng, Y. & Hu, Q. (2009). Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Journal of Food Chemistry, 114, 547-552.
[23] Were, L. M., Bruce, B., Davidson, P. M., & Weiss, J. (2004). Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. Journal of food protection, 67(5), 922-927.
[24] Jin, T., Sun, D., Su, J. Y., Zhang, H., & Sue, H. J. (2009). Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, & Escherichia coli O157: H7. Journal of food science, 74(1), 46-52.
[25] Aleaghil, S. A., Fattahy, E., Baei, B., Saghali, M., Bagheri, H., Javid, N., & Ghaemi, E. A. (2016) Antibacterial activity of zinc oxide nanoparticles on Staphylococcus aureus. International Journal of Advanced Biotechnology and Research, 7(3), 1569-1575.
[26] Ziaee, M., Sowti Khiabani, M., Tizchang, S., Ghanbarzadeh, B., Hamishehkar, H., & Rezay Mokaram, R. (2017). Study of antibacterial effect of nano-encapsulated nisin and natamycin in liposomes against the growth of Staphylococcus aureus and Aspergillus niger. Journal of food science and technology (Iran), 62 (14), 142-259 [in Persian].
[27] Firouzabadi, F. B., Marzban, Z., Khaleghizadeh, S., Daneshmand, F., & Mirhosseini, M. (2016). Combined effects of zinc oxide nanoparticle and malic acid to inhibit Escherichia coli and Staphylococcus aureus”. Iran Journal of Medical Microbiology, 10(5), 52-9 259 [in Persian].