اثرات ضد میکروبی و آنتی اکسیدانی ریزپوشانی عصاره چای سبز در نانوذرات کیتوزان بر روی ماندگاری سوریمی

نویسندگان
1 دانش آموخته دکتری صنایع غذایی، دانشکده علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 هیات علمی گروه علوم و مهندسی صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
3 دانشیار گروه علوم ومهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 استاد تمام دانشگاه تربیت مدرس،تهران، ایران
چکیده
امروزه بیش از هر زمان دیگری، تقاضای مصرف کنندگان برای استفاده از مواد غذایی طبیعی و عاری از نگهدارنده‌های مصنوعی افزایش‌یافته است. یک‌راه حل استفاده از مواد زیستی فعال به‌جای افزودنی‌های مصنوعی در فرمولاسیون مواد غذایی است. این مطالعه به منظور حفظ خاصیت آنتی‌اکسیدانی عصاره چای سبز(GT) از طریق ریز پوشانی آن در نانو ذرات کیتوزان (CS-NP) و و بررسی اثرات نگهدارندگی آن بر روی سوریمی انجام شد. نانوانکپسولاسیون عصاره چای سبز با استفاده از نانوژل کیتوزان-سیترات انجام شد. نتایج نشان داد که عصاره ریز پوشانی شده (CS-NP-GT) بر روی کاهش اکسیداسیون چربی سوریمی از طریق تعیین تیوباربیتوریک اسید و اسید­های چرب آزاد به طور قابل ملاحظه­ای موثر بوده است. آنالیز­های شیمیایی، میکروبی و حسی سوریمی با تیمار CS-NP-GT تفاوت معنی داری در مقایسه با سایر تیمار­ها نشان داد (0/05>p). در پایان دوره نگهداری سوریمی تیمار با CS-NP-GT سبب 2/6 سیکل لگاریتمی کاهش در جمعیت باکتری­های اسید لاکتیک، 2/55 سیکل لگاریتمی کاهش در جمعیت انتروباکتریاسه،4/32 سیکل لگاریتمی کاهش در جمعیت باکتری­های مزوفیل هوازی، 3/7 سیکل لگاریتمی کاهش در جمعیت باسیلوس سرئوس و 2/61 سیکل لگاریتمی کاهش در جمعیت کپک و مخمر شد. در ارزیابی حسی E-0.1-GT در روز نهم نگهداری امتیاز بالاتری در مقایسه با سوریمی تهیه شده با دیگر تیمار­ها کسب کرد. نتایج این پژوهش نشان داد که ریز پوشانی عصاره چای سبز با نانوذرات کیتوزان یک فناوری نویدبخش در جهت کنترل تغییرات شیمیایی، میکروبی و حسی نامطلوب سوریمی و افزایش ماندگاری این محصول است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Antimicrobial and Antioxidant impact of Encapsulation of Green Tea Extract in Chitosan Nanoparticles on Shelf life of Surimi

نویسندگان English

Fatemeh Piran 1
zhaleh khoshkhoo 2
Seyed Ebrahim Hosseini 3
Mohammad Hossein Azizi 4
1 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
3 Department of Food Science and Technology, Tehran Science and Research Branch, Islamic Azad University Tehran, Iran
4 Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
چکیده English

In interest of increasing demand for natural foods free of artificial preservatives, this study aimed to Controlling the antioxidant properties of green tea extract (GT) through its encapsulation in chitosan nanoparticles (CS-NP) and to investigate its preservative effects on surimi. The results showed that GT-loaded chitosan nanoparticle (CS-NP-GT) was significantly effective in reducing the lipid oxidation of surimi by determination of Thiobarbituric acid and free fatty acids. Chemical, microbial and sensory analyzes of surimi with CS-NP-GT treatment showed a significant difference compared to other treatments (p <0.05). At the end of the storage period, surimi treatment with CS-NP-GT caused 2.6 log cycles reduction of lactic acid bacteria, 2.55 log cycles reduction of Enterobacteriaceae, 4.32 log cycles reduction of aerobic mesophilic bacteria, 3.7 log cycles reduction of Bacillus cereus and 2.61 log cycles reduction of mold and yeast. Also in the sensory evaluation, E-0.1-GT had higher score on the ninth day of storage compared to surimi prepared with other treatments. The results of this study showed that encapsulation of green tea extract with chitosan nanoparticles is a promising technology to control chemical, microbial and adverse sensory changes in surimi and increase the shelf life of this product.

کلیدواژه‌ها English

Nanoencapsulation
Chitosan nanoparticles
Surimi
polyphenolic extract
[1] Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., Gavara, R., 2014. Advances in antioxidant active food packaging. Trends in Food Science & Technology 35(1):42-51.
[2] Rattaya, S., Benjakul, S., Prodpran, T., 2015. Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand. International Aquatic Research 7(1):1-16.
[3] Gram, L., Wedell-Neergaard, C., Huss, H.H., 1990. The bacteriology of fresh and spoiling Lake Victorian Nile perch (Lates niloticus). International journal of food microbiology 10(3-4):303-316.
[4] Venugopal, V., Shahidi, F., 1996. Structure and composition of fish muscle. Food Reviews International 12(2):175-197.
[5] Yanar, Y., Küçükgülmez, A., Gökçin, M., Gelibolu, S., Dikel, Ç., 2013. Antioxidant effects of chitosan in European eel (Anguilla anguilla L.) fillets during refrigerated storage. CyTA-Journal of Food 11(4):328-333.
[6] Mauriello, G., 2016. Control of microbial activity using antimicrobial packaging. Antimicrobial food packaging. Elsevier, p. 141-152.
[7] Perumalla, A., Hettiarachchy, N.S., 2011. Green tea and grape seed extracts—Potential applications in food safety and quality. Food Research International 44(4):827-839.
[8] Pasrija, D., Anandharamakrishnan, C., 2015. Techniques for extraction of green tea polyphenols: a review. Food and Bioprocess Technology 8(5):935-950.
[9] Vuong, Q.V., Stathopoulos, C.E., Nguyen, M.H., Golding, J.B., Roach, P.D., 2011. Isolation of green tea catechins and their utilization in the food industry. Food Reviews International 27(3):227-247.
[10] Bora, A.F.M., Ma, S., Li, X., Liu, L., 2018. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Research International 105:241-249.
[11] Dube, A., Nicolazzo, J.A., Larson, I., 2010. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. European Journal of Pharmaceutical Sciences 41(2):219-225.
[12] Liang, J., Li, F., Fang, Y., Yang, W., An, X., Zhao, L., et al., 2011. Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloids and Surfaces B: Biointerfaces 82(2):297-301.
[13] Jamil, B., Abbasi, R., Abbasi, S., Imran, M., Khan, S.U., Ihsan, A., et al., 2016. Encapsulation of Cardamom Essential Oil in Chitosan Nano-composites: In-vitro Efficacy on Antibiotic-Resistant Bacterial Pathogens and Cytotoxicity Studies. Frontiers in microbiology 7:1580.
[14] Darmadji, P., Izumimoto, M., 1994. Effects of chitosan and nitrite on the properties of fermented meat. Animal Science and Technology 65(7):639-646.
[15] Kamil, J.Y., Jeon, Y.-J., Shahidi, F., 2002. Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring (Clupea harengus). Food chemistry 79(1):69-77.
[16] Shahidi, F., Arachchi, J.K.V., Jeon, Y.-J., 1999. Food applications of chitin and chitosans. Trends in Food Science & Technology 10(2):37-51.
[17] Park, J.W., 2005. Surimi and surimi seafood. CRC press.
[18] Darras, V., Nelea, M., Winnik, F.M., Buschmann, M.D., 2010. Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles. Carbohydrate polymers 80(4):1137-1146.
[19] Ghahfarokhi, M.G., Barzegar, M., Sahari, M., Azizi, M., 2016. Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles. J. Agric. Sci. Technol 18:1781-1792.
[20] Rafiee, Z., Barzegar, M., Sahari, M.A., Maherani, B., 2017. Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food chemistry 220:115-122.
[21] Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M., Gavlighi, H.A., Gardini, F., 2017. Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf life extension of beef patties. International journal of biological macromolecules 102:19-28.
[22] Goulas, A.E., Kontominas, M.G., 2005. Effect of salting and smoking-method on the keeping quality of chub mackerel (Scomber japonicus): biochemical and sensory attributes. Food chemistry 93(3):511-520.
[23] Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology 37(8):911-917.
[24] Egan, H., Sawyer, R., 1997. Pearson's chemical Analysis of food. 9th. Edition, Edinburgh, Scotland, Churchill. Livingstone, UK:609-634.
[25] Ojagh, S.M., Rezaei, M., Razavi, S.H., Hosseini, S.M.H., 2010. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food chemistry 120(1):193-198.
[26] Bernárdez, M., Pastoriza, L., Sampedro, G., Herrera, J.J., Cabo, M.L., 2005. Modified method for the analysis of free fatty acids in fish. Journal of Agricultural and Food Chemistry 53(6):1903-1906.
[27] Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M.A., Azizi, M.H., 2016. Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food and Bioprocess Technology 9(7):1187-1201.
[28] Chytiri, S., Chouliara, I., Savvaidis, I., Kontominas, M., 2004. Microbiological, chemical and sensory assessment of iced whole and filleted aquacultured rainbow trout. Food Microbiology 21(2):157-165.
[29] Gonzalez-Fandos, E., Garcıa-Linares, M., Villarino-Rodrıguez, A., Garcıa-Arias, M., Garcıa-Fernandez, M., 2004. Evaluation of the microbiological safety and sensory quality of rainbow trout (Oncorhynchus mykiss) processed by the sous vide method. Food Microbiology 21(2):193-201.
[30] Pesavento, G., Calonico, C., Bilia, A., Barnabei, M., Calesini, F., Addona, R., et al., 2015. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control 54:188-199.
[31] Yoksan, R., Jirawutthiwongchai, J., Arpo, K., 2010. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids and Surfaces B: Biointerfaces 76(1):292-297.
[32] Arulmozhi, V., Pandian, K., Mirunalini, S., 2013. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids and Surfaces B: Biointerfaces 110:313-320.
[33] Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M., 2004. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of controlled release 100(1):5-28.
[34] Garg, A., Visht, S., Sharma, P.K., Kumar, N., 2011. Formulation, characterization and application on nanoparticle: a review. Der Pharmacia Sin 2(2):17-26.
[35] Hu, B., Pan, C., Sun, Y., Hou, Z., Ye, H., Hu, B., et al., 2008. Optimization of fabrication parameters to produce chitosan− tripolyphosphate nanoparticles for delivery of tea catechins. Journal of Agricultural and Food Chemistry
56(16):7451-7458.
[36] Fan, W., Chi, Y., Zhang, S., 2008. The use of a tea polyphenol dip to extend the shelf life of silver carp (Hypophthalmicthys molitrix) during storage in ice. Food chemistry 108(1):148-153.
[37] Manju, S., Jose, L., Gopal, T.S., Ravishankar, C., Lalitha, K., 2007. Effects of sodium acetate dip treatment and vacuum-packaging on chemical, microbiological, textural and sensory changes of Pearlspot (Etroplus suratensis) during chill storage. Food chemistry 102(1):27-35.
[38] Lin, C.-C., Lin, C.-S., 2005. Enhancement of the storage quality of frozen bonito fillets by glazing with tea extracts. Food control 16(2):169-175.
[39] Lopez-Caballero, M., PÉREZ-MATEOS, M., Montero, P., Borderías, A.J., 2000. Oyster preservation by high-pressure treatment. Journal of food protection 63(2):196-201.
[40] Khayat, A., Schwall, D., 1983. Lipid oxidation in seafood. Food Technology (USA).
[41] Andevari, G.T., Rezaei, M., 2011. Effect of gelatin coating incorporated with cinnamon oil on the quality of fresh rainbow trout in cold storage. International Journal of Food Science & Technology 46(11):2305-2311.
[42] Behnam, S., Anvari, M., Rezaei, M., Soltanian, S., Safari, R., 2015. Effect of nisin as a biopreservative agent on quality and shelf life of vacuum packaged rainbow trout (Oncorhynchus mykiss) stored at 4 C. Journal of food science and technology 52(4):2184-2192.
[43] Mexis, S., Chouliara, E., Kontominas, M., 2009. Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fillets stored at 4 C. Food Microbiology 26(6):598-605.
[44] Huber, I., Spanggaard, B., Appel, K., Rossen, L., Nielsen, T., Gram, L., 2004. Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology 96(1):117-132.
[45] Virta, S., 2009. Isolation and identification of rainbow trout spoiling microbiota.
[46] Gram, L., Dalgaard, P., 2002. Fish spoilage bacteria–problems and solutions. Current opinion in biotechnology 13(3):262-266.
[47] ICMSF., 1998. Micro-Organisms in Foods: Microbial Ecology of Food Commodities. Springer US.
[48] Rodrigues, B.L., da Silveira Alvares, T., Sampaio, G.S.L., Cabral, C.C., Araujo, J.V.A., Franco, R.M., et al., 2016. Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food control 60:596-605.
[49] Ultee, A., Kets, E., Smid, E., 1999. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 65(10):4606-4610.
[50] Abbas, K., Saleh, A., Mohamed, A., Lasekan, O., 2009. The relationship between water activity and fish spoilage during cold storage: A review. J. Food Agric. Environ 7(3/4):86-90.
[51] Rahmati, T., Labbe, R., 2008. Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. Journal of food protection 71(6):1178-1185.
[52] Kotiranta, A., Lounatmaa, K., Haapasalo, M., 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes and infection 2(2):189-198.
[53] Böhme, K., Fernández-No, I.C., Gallardo, J.M., Cañas, B., Calo-Mata, P., 2011. Safety assessment of fresh and processed seafood products by MALDI-TOF mass fingerprinting. Food and Bioprocess Technology 4(6):907-918.
[54] Aliakbarlu, J., Khalili Sadaghiani, S., 2015. Effect of Avishane Shirazi (Z ataria Multiflora) and Clove (S yzygium Aromaticum) Essential Oils on Microbiological, Chemical and Sensory Properties of Ground Sheep Meat During Refrigerated Storage. Journal of Food Quality 38(4):240-247.
[55] Michalczyk, M., Macura, R., Tesarowicz, I., Banaś, J., 2012. Effect of adding essential oils of coriander (Coriandrum sativum L.) and hyssop (Hyssopus officinalis L.) on the shelf life of ground beef. Meat science 90(3):842-850.