تاثیر پیش‌تیمار مایکروویو بر زمان هیدرولیز پروتئین قارچ‌خوراکی (Agaricus bisporus) به‌وسیله آنزیم تریپسین جهت تولید پپتیدهای آنتی‌اکسیدان

نویسندگان
1 دانشگاه علوم و کشاورزی منابع طبیعی گرگان
2 دانشگاه علوم و کشاورزی منابع طبیعی گرگان-گروه صنایع غذایی
چکیده
پپتیدهای زیست‌فعال در واقع بخش‌های پروتئینی خاصی هستند که علاوه ‌بر ارزش غذایی، تأثیرات مثبتی برعملکرد بدن و شرایطی دارند که منجر به اثرگذاری برسلامتی می‌شود. استفاده ترکیبی از پیش­تیمار و هیدرولیز آنزیمی باعث ایجاد تغییراتی در خصوصیات فیزیکی و شیمیایی پروتئین­های هیدرولیز شده می­شود. پیش­تیمار با مایکروویو یک رویکرد شناخته شده برای افزایش دسترسی به پیوندهای حساس به هیدرولیز است که مکان‌های برش آنزیم و قرار گرفتن در معرض پروتئازها را تسهیل می‌کند. هدف از این پژوهش بررسی اثر زمان هیدرولیز و همچنین تاثیر پیش­تیمار مایکروویو بر هیدرولیز آنزیمی پروتئین قارچ­­دکمه­ای (Agaricus bisporus) به­وسیله آنزیم تریپسین جهت تولید پپتیدهای آنتی­اکسیدان می­باشد. در این پژوهش تولید پروتئین هیدرولیز شده قارچ­دکمه­ای با استفاده از آنزیم تریپسین بدون پیش­تیمار و با پیش­تیمارمایکرویودر توان­های مختلف 120، 200 و280 وات صورت گرفت. ویژگی­های آنتی­اکسیدانی نمونه­ها (فعالیت مهار رادیکال DPPH[1]، قدرت شلاته­کنندگی آهن، قدرت احیاء­کنندگی یون آهن، فعالیت آنتی­اکسیدانی کل) ارزیابی شدند. نتایج نشان داد که درغالب آزمون­های صورت گرفته، پیش­تیمار با مایکرویو موجب کاهش زمان دستیابی و افزایش قابلیت آنتی­اکسیدانی نمونه­هاگردید به­طوری­که نمونه­های پیش­تیمار شده مایکرویو با توان 120 وات نسبت به نمونه­های تیمار شده با توان 200 و 280 وات و نمونه­های بدون پیش­تیمار از قابلیت آنتی­اکسیدانی بالاتری برخوردار بودند. در کلیه آزمون­های آنتی­اکسیدانی نمونه پیش­تیمار شده با مایکوویو با توان 120 و در زمان هیدرولیز 90 دقیقه عملکرد بالاتری از خود نشان داد و بنابراین به عنوان تیمار مناسب در نظر گرفته شد. بر اساس این نتایج می­توان بیان نمود که استفاده از پیش­تیمار مایکرویو با توان 120 وات موجب کوتاه نمودن زمان هیدرولیز جهت دستیابی به پپتیدهای با قابلیت آنتی­اکسیدانی بالاتر می­گردد و در نتیجه موجب افزایش کارآیی هیدرولیز آنزیمی می­گردد.


[1] 2,2-Diphenyl-1- Picrylhydrazyl
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of microwave pretreatment on enzymatic hydrolysis time of edible mushroom (Agaricus bisporus) protein by trypsin enzyme and production of antioxidant peptides

نویسندگان English

isan izanloo 1
Alireza Sadeghi Mahoonak 2
1 Gorgan University of Science and Agriculture of Natural Resources
2 Gorgan University of Science and Agriculture of Natural Resources - Department of Food Industry
چکیده English

Bioactive peptides are actually specific protein parts that, in addition to nutritional value, have positive effects on body function and conditions that lead to health effects. The combined use of pretreatment and enzymatic hydrolysis causes changes in the physical and chemical properties of hydrolyzed proteins. Microwave pretreatment is a well-known strategy to increase the accessibility of hydrolysis-sensitive bonds, facilitating enzyme cleavage sites and exposure to proteases. The aim of this research was to investigate the effect of hydrolysis time and also the effect of microwave pretreatment on enzymatic hydrolysis of edible mushroom (Agaricus bisporus) protein by trypsin enzyme to produce antioxidant peptides. To conduct this research, first, edible mushrooms were turned into powder after purchase from the market and conducting related processes. In this research, hydrolyzed edible mushroom was produced using trypsin enzyme without pretreatment and with microwave pretreatment at different powers of 120, 200, and 280W and time intervals of 30, 60, 90, 120, 150, 180 and 210 minutes. The antioxidant properties of the hydrolysed samples (DPPH radical scavenging activity, iron chelating power, iron ion reduction power and total antioxidant activity) were evaluated and compared. The results showed that in most of the experiments, pretreatment with microwaves decreased the time of obtaining and increased the antioxidant capacity of the samples, so that the samples pretreated with microwave power of 120W showed higher antioxidant power compared to the other treated samples. In all antioxidant tests, the sample pre-treated with microwave with power 120W and hydrolysed at 90minutes showed higher antioxidant performance, and therefore it is considered as suitable treatment.

کلیدواژه‌ها English

Antioxidant properties
Edible mushroom
enzymatic hydrolysis
Microwave pretreatment
[1] Othman, A., Ismail, A., Ghani, N. A., & Adenan, I. (2007). Antioxidant capacity and phenolic content of cocoa beans. Food Chemistry, 100(4), 1523-1530.
[2] Parker, T. D., Adams, D. A., Zhou, K., Harris, M., & Yu, L. (2003). Fatty acid composition and oxidative stability of cold‐pressed edible seed oils. Journal of Food Science, 68(4), 1240-1243.
[3] Nourmohammadi, E., Sadeghi Mahoonak, A., Ghorbani, M., Alami, M., & Sadeghi, M. (2017). The optimization of the production of anti-oxidative peptides from enzymatic hydrolysis of Pumpkin seed protein. Iranian Food Science and Technology Research Journal, 13(1), 14-26.
[4] Bhat, Z. F., Kumar, S., & Bhat, H. F. (2015). Bioactive peptides of animal origin: a review. Journal of Food Science and Technology, 52(9), 5377-5392.
[5] Fitzgerald, R. J., & Murray, B. A. (2006). Bioactive peptides and lactic fermentations. International Journal of Dairy Technology, 59(2), 118-125.
[6] Beermann, C., Euler, M., Herzberg, J., & Stahl, B. (2009). Anti-oxidative capacity of enzymatically released peptides from soybean protein isolate. European Food Research and Technology, 229(4), 637-644.
[7] Zhang, Q. X., Wu, H., Ling, Y. F., & Lu, R. R. (2013). Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS. Journal of Dairy Research, 80(3), 367-373.
[8] Nimalaratne, C., Bandara, N., & Wu, J. (2015). Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chemistry, 188, 467-472.
[9] Gao, D., Cao, Y., & Li, H. (2010). Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate. Journal of the Science of Food and Agriculture, 90(11), 1855-1860.
[10] Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1), 178-184.
[11] Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., & Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6, 384-394.
[12] Zhou, C., Hu, J., Yu, X., Yagoub, A. E. A., Zhang, Y., Ma, H., Gao, X, & Otu, P. N. Y. (2017). Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT, 77, 488-496.
[13] Li, X. R., Chi, C. F., Li, L., & Wang, B. (2017). Purification and identification of antioxidant peptides from protein hydrolysate of scalloped hammerhead (Sphyrna lewini) cartilage. Marine Drugs, 15(3), 61.
[14] Pan, A. D., Zeng, H. Y., Alain, G. B. F. C., & Feng, B. (2016). Heat-pretreatment and enzymolysis behavior of the lotus seed protein. Food Chemistry, 201, 230-236.
[15] Chen, L., Chen, J., Ren, J., & Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of Agricultural and Food Chemistry, 59(6), 2600-2609.
[16] Saha, M., Eskicioglu, C., & Marin, J. (2011). Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresource Technology, 102(17), 7815-7826.
[17] Azarpazhooh, E., & Ramaswamy, H. S. (2011). Optimization of microwave-osmotic pretreatment of apples with subsequent air-drying for preparing high-quality dried product. International Journal of Microwave Science and Technology, 2011, 678548.
[18] Chian, F. M., Kaur, L., Oey, I., Astruc, T., Hodgkinson, S., & Boland, M. (2019). Effect of Pulsed Electric Fields (PEF) on the ultrastructure and in vitro protein digestibility of bovine longissimus thoracis. LWT, 103, 253-259.
[19] Plagemann, R., von Langermann, J., & Kragl, U. (2014). Microwave‐assisted covalent immobilization of enzymes on inorganic surfaces. Engineering in Life Sciences, 14(5), 493-499.
[20] Hall, F., & Liceaga, A. (2020). Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. Journal of Functional Foods, 64, 103634.
[21] Banik, S. B. A. S. G. S., Bandyopadhyay, S., & Ganguly, S. (2003). Bioeffects of microwave a brief review. Bioresource Technology, 87(2), 155-159.
[22] He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289-297.
[23] Ketnawa, S., & Liceaga, A. M. (2017). Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food and Bioprocess Technology, 10(3), 582-591.
[24] Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., & Lv, J. (2015). Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18, 1138-1146.
[25] Lavi, I., Nimri, L., Levinson, D., Peri, I., Hadar, Y., & Schwartz, B. (2012). Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. Journal of Gastroenterology, 47(5), 504-518.
[26] Paisansak, S., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Choowongkomon, K., & Karnchanata, A. 2020. Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom (Lentinula edodes). Journal Food Science and Technology. 58(1): 85–97.
[27] Association of official analytical chemists (AOAC). (2000). Official methods of analysis of AOAC international Methods 934.01, 988.05,920.39, 942.05. Arlington, VA, USA: AOAC International.
[28] Chi, C. F., Hu, F. Y., Wang, B., Li, T., & Ding, G. F. (2015). Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15, 301-313.
[29] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114(4), 1198-1205.
[30] Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341.
[31] Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1), 178-184.
[32] Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidant compounds and their antioxidant mechanism. Antioxidants, 10, 1-29.
[33] Wen, C., Zhang, J., Zhang, H., Duan, Y., & Ma, H. (2020). Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends in Food Science & Technology, 105, 308-322.
[34] You, L., Zhao, M., Cui, C., Zhao, H., & Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science & Emerging Technologies, 10(2), 235-240.
[35] Zhu, L., Chen, J., Tang, X., & Xiong, Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56(8), 2714-2721.
[36] Girgih, A. T., Udenigwe, C. C., & Aluko, R. E. (2011). In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. Journal of the American Oil Chemists' Society, 88(3), 381-389.
[37] Rajapakse, N., Mendis, E., Byun, H. G., & Kim, S. K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of Nutritional Biochemistry, 16(9), 562-569.
[38] Meshginfar, N., Sadeghi, M. A., Ziaiifar, A. M., Ghorbani, M., & Kashaninejad, M. (2014). Optimization of the production of protein hydrolysates from meat industry by products by response surface methodology.
[39] Urbizo-Reyes, U., San Martin-González, M. F., Garcia-Bravo, J., Vigil, A. L. M., & Liceaga, A. M. (2019). Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis. Food Hydrocolloids, 97, 105187.
[40] Uluko, H., Zhang, S., Liu, L., Li, H., Cui, W., Xue, H., ... & Lv, J. (2014). Pilot-scale membrane fractionation of ACE inhibitory and antioxidative peptides from ultrasound pretreated milk protein concentrate hydrolysates. Journal of Functional Foods, 7, 350-361.
[41] Wang, S., Xu, X., Wang, S., Wang, J., & Peng, W. (2022). Effects of Microwave Treatment on Structure, Functional Properties and Antioxidant Activities of Germinated Tartary Buckwheat Protein. Foods, 11(10), 1373.
[42] Chang, C. Y., Wu, K. C., & Chiang, S. H. (2007). Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chemistry, 100(4), 1537-1543.
[43] Pan, X., Zhao, Y. Q., Hu, F. Y., & Wang, B. (2016). Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods, 25, 220-230.
[44] Arabshahi-Delouee, S., & Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102(4), 1233-1240.
[45] Udenigwe, C. C., & Aluko, R. E. (2011). Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences, 12(5), 3148-3161.
[46] Ding, Q., Zhang, T., Niu, S., Cao, F., Wu-Chen, R. A., Luo, L., & Ma, H. (2018). Impact of ultrasound pretreatment on hydrolysate and digestion products of grape seed protein. Ultrasonics Sonochemistry, 42, 704-713.
[47] Gazikalović, I., Mijalković, J., Šekuljica, N., Jakovetić Tanasković, S., Đukić Vuković, A., Mojović, L., & Knežević-Jugović, Z. (2021). Synergistic Effect of Enzyme Hydrolysis and Microwave Reactor Pretreatment as an Efficient Procedure for Gluten Content Reduction. Foods, 10(9), 2214.
[48] Yıldırım, A., Mavi, A., Oktay, M., Kara, A. A., Algur, Ö. F., & Bilaloǧlu, V. (2000). Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts. Journal of Agricultural and Food Chemistry, 48(10), 5030-5034.
[49] Zhu, L., Chen, J., Tang, X., & Xiong, Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56(8), 2714-2721.
[50] Mahroug, H., Ribeiro, M., Rhazi, L., Bentallah, L., Zidoune, M. N., Nunes, F. M., & Igrejas, G. (2019). How microwave treatment of gluten affects its toxicity for celiac patients? A study on the effect of microwaves on the structure, conformation, functionality and immunogenicity of gluten. Food Chemistry, 297, 124986.
[51] Lin, Y. J., Le, G. W., Wang, J. Y., Li, Y. X., Shi, Y. H., & Sun, J. (2010). Antioxidative peptides derived from enzyme hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. International Journal of Molecular Sciences, 11(11), 4297-4308.
[52] Yamaguchi, F., Ariga, T., Yoshimura, Y., & Nakazawa, H. (2000). Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. Journal of Agricultural and Food Chemistry, 48(2), 180-185.
[53] Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4), 1317-1327.
[54] Sadat, L., Cakir-Kiefer, C., N’Negue, M. A., Gaillard, J. L., Girardet, J. M., & Miclo, L. (2011). Isolation and identification of antioxidative peptides from bovine α-lactalbumin. International Dairy Journal, 21(4), 214-221.
[55] Je, J. Y., Park, P. J., & Kim, S. K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38(1), 45-50.
[56] Uchida, K., & Kawakishi, S. (1992). Sequence-dependent reactivity of histidine-containing peptides with copper (II)/ascorbate. Journal of Agricultural and Food Chemistry, 40(1), 13-16.
[57] Yan, X., Khan, N. A., Zhang, F., Yang, L. and Yu, P. (2014). Microwave irradiation induced changes in protein molecular structures of barley grains: relationship to changes in protein chemical profile, protein subfractions, and digestion in dairy cows. Journal of Agricultural and Food Chemistry, 62:6546–6555.
[58] de la Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 34(2), 164-178.
[59] Izquierdo, F. J., Alli, I., Yaylayan, V., & Gomez, R. (2007). Microwave-assisted digestion of β-lactoglobulin by pronase, α-chymotrypsin and pepsin. International Dairy Journal, 17(5), 465-470.
[60] Gao, C., Wang, F., Yuan, L., Liu, J., Sun, D., & Li, X. (2019). Physicochemical property, antioxidant activity, and cytoprotective effect of the germinated soybean proteins. Food Science & Nutrition, 7(1), 120-131.