اثر امواج فراصوت و روش خشک‌کردن بر سینتیک افت رطوبت و آبگیری مجدد گندم جوانه زده

نویسندگان
1 گروه بهداشت و کنترل کیفی مواد غذایی، دانشگاه بوعلی سینا، همدان، ایران.
2 دانشیار، گروه بهداشت و کنترل کیفی مواد غذایی، دانشگاه بوعلی سینا، همدان، ایران.
3 گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران.
چکیده
در این پژوهش اثر زمان فراصوت و نوع خشک‌کن (هوای داغ و فروسرخ) بر زمان خشک‌شدن، ضریب نفوذ مؤثر رطوبت و آبگیری مجدد جوانه‌های گندم بررسی و سینتیک خشک شدن مدل‌سازی شد. برای اعمال پیش‌تیمار فراصوت، جوانه‌ها به مدت 0، 5، 10 و 15 دقیقه داخل دستگاه حمام فراصوت قرار گرفتند و بعد از خروج از دستگاه و حذف رطوبت اضافی، نمونه‌ها به‌صورت لایه‌نازک داخل خشک‌کن‌های هوای داغ (با دمای 70 درجه سلسیوس) و فروسرخ (توان 250 وات) قرار گرفتند. نتایج این پژوهش نشان داد که تیمار فراصوت تا 5 دقیقه، سبب افزایش سرعت خروج رطوبت از جوانه‌ها، افزایش ضریب نفوذ مؤثر رطوبت و در نتیجه باعث کاهش زمان خشک‌کردن می‌گردد. با افزایش زمان تیمار فراصوت از صفر به 5 دقیقه، میانگین زمان خشک شدن جوانه‌ها در خشک‌کن‌های هوای داغ و فروسرخ به ترتیب از 7/126 دقیقه به 0/120 دقیقه و 7/25 دقیقه به 3/21 دقیقه کاهش یافت. متوسط زمان خشک شدن نمونه‌ها در خشک‌کن هوای داغ 8/150 دقیقه و در خشک‌کن فروسرخ 0/28 دقیقه بود. همچنین متوسط ضریب نفوذ مؤثر رطوبت محاسبه‌شده برای نمونه‌های قرار گرفته در خشک‌کن هوای داغ برابر m2s-1 10-10×65/1 و برای خشک‌کن فروسرخ برابر m2s-1 10-10×59/8 بود. زمان اعمال امواج فراصوت و روش خشک‌کردن تأثیر معنی‌داری بر آبگیری مجدد نمونه‌ها داشتند و مقدار این پارامتر برای نمونه‌های خشک‌شده در خشک‌کن هوای داغ بیشتر بود. جهت بررسی سینتیک خشک شدن جوانه‌های گندم، مدلهای ریاضی بر دادههای آزمایشگاهی برازش و در مجموع مدل پیج با دو پارامتر (k و n) بر اساس بالاترین صحت به‌عنوان بهترین مدل انتخاب شد. به‌طورکلی، بهترین شرایط برای خشک‌کردن جوانه‌های گندم، 5 دقیقه پیش‌تیمار با فراصوت و سپس استفاده از خشک‌کن فروسرخ بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of ultrasonic waves and drying method on the moisture loss kinetics and rehydration of sprouted wheat

نویسندگان English

Samira Amin Ekhlas 1
Mohamadreza Pajohi-Alamoti 2
Fakhreddin Salehi 3
1 Department of Food Hygiene and Quality Control, Bu-Ali Sina University, Hamedan, Iran.
2 Associate Professor, Department of Food Hygiene and Quality Control, Bu-Ali Sina University, Hamedan, Iran.
3 Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
چکیده English

In this research, the effect of ultrasound time and dryer type (hot-air and infrared) on the drying time, effective moisture diffusivity coefficient and rehydration of wheat sprouts were investigated and drying kinetics were modeled. To apply ultrasound pre-treatment, the sprouts were placed inside the ultrasonic bath machine for 0, 5, 10, and 15 minutes, and after leaving the machine and removing extra moisture, the samples in thin layers were placed in the hot-air (with a temperature of 70°C) and infrared (power of 250 W) dryers. The results showed that sonication up to 5 minutes, causes an increase in moisture removal rate from the sprouts, an increase in the effective moisture diffusivity coefficient, and as a result, reduces the drying time. By increasing sonication time from zero to 5 min, the average drying time of sprouts in the hot-air and infrared dryers decreased from 126.7 min to 120.0 min, and from 25.7 min to 21.3 min, respectively. The average drying time of the samples in the hot-air dryer was 150.8 min and in the infrared dryer was 28.0 min. Also, the average effective moisture diffusivity coefficient calculated for the samples placed in the hot-air dryer was equal to 1.65×10-10 m2s-1 and for the infrared dryer it was equal to 8.59×10-10 m2s-1. The time of ultrasound and drying treatment had significant effects on the rehydration of samples, and the value of this parameter was higher for samples dried in the hot-air dryer. In order to investigate the drying kinetics of wheat sprouts, mathematical models were fitted to the experimental data, and the Page model with two parameters (k and n) was chosen as the best model based on the highest accuracy. Generally, 5 minutes pre-treatment by ultrasound and then using an infrared dryer is the best condition for drying wheat sprouts.

کلیدواژه‌ها English

Effective moisture diffusivity coefficient
Hot-air
Infrared
Page model
Wheat sprout
[1] Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., Galieni, A. 2019. Sprouted grains: A comprehensive review, Nutrients. 11, 421.
[2] Talebi Najaf Abadi, S., Sharifi, A., Absalan, A. A. 2020. Effect of germination process on nutritional value changes and some mung bean physicochemical properties, Research Achievements for Field and Horticulture Crops. 8, 211-224.
[3] Liu, T., Hou, G. G., Cardin, M., Marquart, L., Dubat, A. 2017. Quality attributes of whole-wheat flour tortillas with sprouted whole-wheat flour substitution, LWT. 77, 1-7.
[4] Afify, A. E.-M., Abbas, M. S., Abd El-Lattefi, B. M., Ali, A. M. 2016. Chemical, rheological and physical properties of germinated wheat and naked barley, International Journal of ChemTech Research. 9, 521-531.
[5] Shingare, S. P., Thorat, B. N. 2013. Fluidized bed drying of sprouted wheat (Triticum aestivum), International Journal of Food Engineering. 10, 29-37.
[6] Jokar, A., NoruziPaghand, A., Madani, S., Shaamirian, M., Zare, M. 2019. Using germinated wheat flour instead of flour and starch in sausage production, Journal of Food Science and Technology (Iran). 15, 61-72.
[7] Jribi, S., Gliguem, H., Szalóki-Dorkó, L., Naàr, Z., Kheriji, O., Debbabi, H. 2022. Impact of drying method on bioactive compounds, functional and thermal properties of durum wheat (Triticum durum) sprouts, The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology. 46, 79-92.
[8] Salehi, F. 2020. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review, International Journal of Fruit Science. 20, 586-602.
[9] Hasani, A., Khosh Taghaza, M. H., Ebadi, M. 2020. Effect of infrared drying on qualitative characteristics of sumac fruit (Rhus coriaria L.), Journal of Horticultural Science. 34, 493-504.
[10] Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., Youssef, M. M. 2012. Applications of ultrasound in analysis, processing and quality control of food: A review, Food Research International. 48, 410-427.
[11] Esmaili Adabi, M., Mosavi Seyedi, S. R., Kalantari, D., Ghavami Adl, B. 2015. Mathematical modelling, kinetics and energy consumption for drying aloe vera gel in hot air dryer with exhaust air recycle, Journal of food science and technology(Iran). 13, 73-83.
[12] Doymaz, I. 2007. The kinetics of forced convective air-drying of pumpkin slices, Journal of Food Engineering. 79, 243-248.
[13] Rafiee, S., Keyhani, A., Jafari, A. 2008. Modeling effective moisture diffusivity of wheat (Tajan) during air drying, International Journal of Food Properties. 11, 223-232.
[14] Salehi, F., Satorabi, M. 2021. Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums, International Journal of Fruit Science. 21, 519-527.
[15] Salehi, F., Cheraghi, R., Rasouli, M. 2022. Influence of sonication power and time on the osmotic dehydration process efficiency of banana slices, Journal of Food Science and Technology (Iran). 19, 197-206.
[16] Hassan, S., Imran, M., Ahmad, M. H., Khan, M. I., Xu, C., Khan, M. K., Muhammad, N. 2020. Phytochemical characterization of ultrasound-processed sorghum sprouts for the use in functional foods, International Journal of Food Properties. 23, 853-863.