ویژگی‌های فیزیکوشیمیایی و عملکردی نشاسته کینوا اصلاح‌شده با مخلوط آدیپیک‌اسید و استیک‌انهیدرید

نویسندگان
1 واحد آیت ا… آملی، دانشگاه آزاد اسلامی
2 پژوهشکده توسعه فناوری‌های شیمیایی، پلیمری و پتروشیمیایی، پژوهشگاه صنعت نفت
چکیده
در این پژوهش، نمونه‌های نشاسته کینوا در 9 تیمار با نسبت‌های متفاوت از مخلوط آدیپیک اسید و استیک انهیدرید (نسبت 1 به 30)، به همراه یک نمونه شاهد از نظر ویژگی‌های فیزیکوشیمیایی و عملکردی و تعیین شرایط بهینه اصلاح شیمیایی مورد ارزیابی قرار گرفتند. تیمارهای مذکور توسط 3 متغیر مستقل مؤثر بر اصلاح شیمیایی شامل غلظت اصلاح‌کننده شیمیایی (2%، 4% و 6%)، pH سوسپانسیون (8، 5/8 و 9) و زمان واکنش (60، 90، 120 دقیقه) به روش تاگوچی طراحی گردیدند. قدرت تورم و قابلیت جذب آب نمونه T2 (غلظت اصلاح‌کننده 2%، pH سوسپانسیون 9 و زمان واکنش 120 دقیقه) به‌طور معنی‌داری نسبت به نمونه شاهد افزایش یافت که نشانه تشکیل اتصالات عرضی همراه با تشکیل شبکه‌های سه‌بعدی ژل پایدار است. نتایج طیف‌سنجی نشان داد که به‌جز نمونه T2، بقیه نمونه‌ها تمایل جزئی به رتروگراداسیون داشتند که نشانه پایداری بالای نمونه مذکور در طول مدت زمان ماندگاری به سینرسیس بود (P<0.05). استیلاسیون به دلیل پراکندگی بهتر نشاسته در محیط آبی ویژگی حلالیت را به‌طور قابل‌توجهی نسبت به نمونه شاهد بهبود بخشید. با افزایش غلظت اصلاح‌کننده، پایداری نمونه‌ها در برابر چرخه انجماد-انجمادزدایی به‌طور معنی‌داری کاهش یافت (P<0.05). پارامترهای بررسی شده در اندازه‌گیری ویژگی‌های حرارتی نشاسته اصلاح‌شده کینوا با اختلاف معنی‌داری بیشتر از نمونه شاهد ارزیابی شدند. ویسکوزیته ظاهری نمونه T2 در سرعت برشی 20، 50 و 100 دور در دقیقه نسبت به نمونه شاهد به‌طور معنی‌داری افزایش یافت ولی بقیه نمونه‌ها ویسکوزیته کمتری را نشان دادند. همچنین، با بهره‌گیری از آنالیز تاگوچی تیمار بهینه نشاسته اصلاح‌شده کینوا با غلظت اصلاح‌کننده 2%، pH سوسپانسیون 9 و زمان واکنش 120 دقیقه تعیین گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physicochemical and functional properties of modified quinoa starch with adipic acid and acetic anhydride mixture

نویسندگان English

Seyed Mehdi Zakeri 1
Mazdak Alimi 1
Shirin Shokoohi 2
Seyed-Ahmad Shahidi 1
1 Ayatollah Amoli Branch, Islamic Azad University
2 Chemical, Polymeric and Petrochemical Technology Development Research Division, Research Institute of Petroleum Industry
چکیده English

In this research, quinoa starch samples were evaluated in 9 treatments with different proportions of adipic acid and acetic anhydride mixture (ratio 1 to 30), along with a control sample in terms of physicochemical and functional characteristics and determining the optimal conditions for chemical modification. The mentioned treatments were designed by 3 independent variables affecting chemical modification, including chemical modifier concentration (2%, 4% and 6%), suspension pH (8, 8.5 and 9) and reaction time (60, 90, 120 minutes) by Taguchi method. became The swelling power and water absorption capacity of sample T2 (modifier concentration 2%, suspension pH 9 and reaction time 120 minutes) significantly increased compared to the control sample, which is a sign of the formation of crosslinks along with the formation of stable three-dimensional gel networks. Spectroscopy results showed that except for T2 sample, the rest of the samples had a slight tendency to retrogradation, which was a sign of the high stability of the said sample during the retention period to syneresis (p<0.05). Acetylation significantly improved the solubility characteristics compared to the control sample due to the better dispersion of starch in the aqueous medium. With the increase in the modifier concentration, the stability of the samples against the freeze-thaw cycle decreased significantly (p<0.05). The investigated parameters in measuring the thermal characteristics of modified quinoa starch were evaluated with a significant difference more than the control sample. The apparent viscosity of the T2 sample at the shear speed of 20, 50 and 100 rpm increased significantly compared to the control sample, but the other samples showed a lower viscosity. Also, using Taguchi analysis, the optimal treatment of modified quinoa starch with 2% modifier concentration, suspension pH 9 and reaction time 120 minutes was determined.

کلیدواژه‌ها English

Acetylation
Adipic acid
Chemical modification
Cross-linking
Functional properties
Quinoa starch
Taguchi method
[1] Fabio, A. D., & Parraga, G. (2017). Origin, production and utilization of pseudocereals. Pseudocereals: chemistry and technology, 1-27.
[2] Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food chemistry, 183, 83-90.
[3] Gómez-Caravaca, A. M., Iafelice, G., Verardo, V., Marconi, E., & Caboni, M. F. (2014). Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food chemistry, 157, 174-178.
[4] Nowak, V., Du, J., & Charrondière, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food chemistry, 193, 47-54.
[5] Lindeboom, N., Chang, P. R., Falk, K. C., & Tyler, R. T. (2005). Characteristics of starch from eight quinoa lines. Cereal chemistry, 82(2), 216-222.
[6] Wang, S., & Zhu, F. (2016). Formulation and quality attributes of quinoa food products. Food and Bioprocess Technology, 9(1), 49-68.
[7] Roshani, S., Shahidi, S.A., Ghorbani-HasanSaraei, A., & Raeisi, S. N. (2021). Phytochemical content, physicochemical and microstructural properties of apple powder as affected by drying method. Latin American Applied Research-An international journal, 51(1), 27-35.
[8] Bertoft, E., Annor, G. A., Shen, X., Rumpagaporn, P., Seetharaman, K., & Hamaker, B. R. (2016). Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohydrate Polymers, 140, 113-121.
[9] Zhu, F., Bertoft, E., & Li, G. (2016). Morphological, thermal, and rheological properties of starches from maize mutants deficient in starch synthase III. Journal of agricultural and food chemistry, 64(34), 6539-6545.
[10] Zieba, ˛ T. (2009). Resistant starch in food products. In N. Yee, & W. Bussel (Eds.), Potato III. Food 3 (special issue 1) (pp. 67–71). Global Science Books.
[11] Galanakis, C. M., Tornberg, E., & Gekas, V. (2010). Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT-Food Science and Technology, 43(7), 1018-1025.
[12] Gibiński, M., Kowalski, S., Sady, M., Krawontka, J., Tomasik, P., & Sikora, M. (2006). Thickening of sweet and sour sauces with various polysaccharide combinations. Journal of Food Engineering, 75(3), 407-414.
[13] Karimi, F., Hamidian, Y., Behrouzifar, F., Mostafazadeh, R., Ghorbani-HasanSaraei, A., Alizadeh, M., ... & Asrami, P. N. (2022). An applicable method for extraction of whole seeds protein and its determination through Bradford's method. Food and Chemical Toxicology, 164, 113053.
[14] Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., ... & Tiller, S. A. (1998). Starch production and industrial use. Journal of the Science of Food and Agriculture, 77(3), 289-311.
[15] Ratnayake, W. S., & Jackson, D. S. (2008). Starch gelatinization. Advances in food and nutrition research, 55, 221-268.
[16] Wattanachant, S., Muhammad, K. M. A. T., Hashim, D. M., & Rahman, R. A. (2003). Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chemistry, 80(4), 463-471.
[17] Haq, F., Yu, H., Wang, L., Teng, L., Haroon, M., Khan, R. U., ... & Nazir, A. (2019). Advances in chemical modifications of starches and their applications. Carbohydrate research, 476, 12-35.
[18] Bushra, M., Xu, X. Y., & Pan, S. Y. (2013). Microwave assisted acetylation of mung bean starch and the catalytic activity of potassium carbonate in free‐solvent reaction. Starch‐Stärke, 65(3‐4), 236-243.
[19] Kapelko, M., Zięba, T., Golachowski, A., & Gryszkin, A. (2012). Effect of the production method on the properties of RS3/RS4 type resistant starch. Part 1: Properties of retrograded starch (RS3) produced under various conditions and its susceptibility to acetylation. Food chemistry, 135(3), 1494-1504.
[20] Razi, S. M., Motamedzadegan, A., Matia-Merino, L., Shahidi, S. A., & Rashidinejad, A. (2019). The effect of pH and high-pressure processing (HPP) on the rheological properties of egg white albumin and basil seed gum mixtures. Food hydrocolloids, 94, 399-410.
[21] Zięba, T., Kapelko, M., & Szumny, A. (2013). Effect of preparation method on the properties of potato starch acetates with an equal degree of substitution. Carbohydrate polymers, 94(1), 193-198.
[22] Fornal, J., Sadowska, J., Błaszczak, W., Jeliński, T., Stasiak, M., Molenda, M., & Hajnos, M. (2012). Influence of some chemical modifications on the characteristics of potato starch powders. Journal of Food Engineering, 108(4), 515-522.
[23] Berski, W., Ptaszek, A., Ptaszek, P., Ziobro, R., Kowalski, G., Grzesik, M., & Achremowicz, B. J. C. P. (2011). Pasting and rheological properties of oat starch and its derivatives. Carbohydrate polymers, 83(2), 665-671.
[24] Simsek, S., Ovando-Martínez, M., Whitney, K., & Bello-Pérez, L. A. (2012). Effect of acetylation, oxidation and annealing on physicochemical properties of bean starch. Food Chemistry, 134(4), 1796-1803.
[25] Shafizadeh, A., Golestan, L., Ahmadi, M., Darjani, P., & Ghorbani-HasanSaraei, A. (2020). Encapsulation of Lactobacillus casei in alginate microcapsules: improvement of the bacterial viability under simulated gastrointestinal conditions using flaxseed mucilage. Journal of food measurement and characterization, 14(4), 1901-1908.
[26] Emeje, M., Kalita, R., Isimi, C., Buragohain, A., Kunle, O., & Ofoefule, S. (2012). Synthesis, physicochemical characterization, and functional properties of an esterified starch from an underutilized source in Nigeria. African Journal of Food, Agriculture, Nutrition and Development, 12(7), 7001-7018.
[27] Kapelko, M., Zięba, T., Michalski, A., & Gryszkin, A. (2015). Effect of cross-linking degree on selected properties of retrograded starch adipate. Food chemistry, 167, 124-130.
[28] Aghili Dehnavi, F., Golkar, A., Molavi, H., & Hojjatoleslamy, M. (2018). The Effect of Acetylation and Cross-linking on the Physicochemical, Functional and Structural Properties of Iranian Pea Starch (Jam variety). Research and Innovation in Food Science and Technology, 6(4), 389-402.
[29] Mohammadi, S., Alimi, M., Shahidi, S. A., & Shokoohi, S. (2022). Physicochemical and functional properties of modified amaranth starch with adipic acid and acetic anhydride mixture. Journal of food science and technology (Iran), 19(130), 197-212.
[30] Zięba, T., Gryszkin, A., & Kapelko, M. (2014). Selected properties of acetylated adipate of retrograded starch. Carbohydrate polymers, 99, 687-691.
[31] Li, G., Wang, S., & Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohydrate polymers, 137, 328-338.
[32] Luo, F. X., Huang, Q., Fu, X., Zhang, L. X., & Yu, S. J. (2009). Preparation and characterisation of crosslinked waxy potato starch. Food Chemistry, 115(2), 563-568.
[33] Leach Harry, W., McCowen, L. D., & Choch, J. T. (1959). Structure of the starch granule I. Swelling and solubility patterns of various starches. Cereal Chemistry, 36, 534-544.
[34] Luo, F. X., Huang, Q., Fu, X., Zhang, L. X., & Yu, S. J. (2009). Preparation and characterisation of crosslinked waxy potato starch. Food Chemistry, 115(2), 563-568.
[35] Madruga, M. S., de Albuquerque, F. S. M., Silva, I. R. A., do Amaral, D. S., Magnani, M., & Neto, V. Q. (2014). Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch. Food chemistry, 143, 440-445.
[36] Bello-Pérez, L. A., Contreras-Ramos, S. M., & Jìmenez-Aparicio, A. (2000). Acetylation and characterization of banana (Musa paradisiaca) Starch. Acta Cient Venez, 51, 143-149.
[37] Uriyapongson, J., & Rayas-Duarte, P. (1994). Comparison of yield and properties of amaranth starches using wet and dry-wet milling processes. Cereal Chemistry, 71(6), 571-577.
[38] Steffolani, M. E., León, A. E., & Pérez, G. T. (2013). Study of the physicochemical and functional characterization of quinoa and kañiwa starches. Starch‐Stärke, 65(11-12), 976-983.
[39] Mirzaei, M., Alimi, M., Shokoohi, S., & Golchoobi, L. (2018). Synergistic interactions between konjac‐mannan and xanthan/tragacanth gums in tomato ketchup: Physical, rheological, and textural properties. Journal of texture studies, 49(6), 586-594.
[40] Sasaki, T., Yasui, T., Matsuki, J., & Satake, T. (2002). Comparison of physical properties of wheat starch gels with different amylose content. Cereal chemistry, 79(6), 861-866.
[41] Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food chemistry, 81(2), 219-231.
[42] Choi, S. G., & Kerr, W. L. (2004). Swelling characteristics of native and chemically modified wheat starches as a function of heating temperature and time. Starch‐Stärke, 56(5), 181-189.
[43] Kaur, L., Singh, N., & Singh, J. (2004). Factors influencing the properties of hydroxypropylated potato starches. Carbohydrate Polymers, 55(2), 211-223.
[44] Nara, S., & Komiya, T. (1983). Studies on the relationship between water saturated state and crystallinity by the diffraction method for moistened potato starch. Starch, vol. 35, no. 12, p. 111-114.
[45] Mirmoghtadaie, L., Kadivar, M., & Shahedi, M. (2009). Effects of cross-linking and acetylation on oat starch properties. Food Chemistry, 116(3), 709-713.
[46] Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V., & Ferreira, I. C. (2019). Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food chemistry, 280, 110-114.
[47] Bello-Perez, L. A., Roger, P., Baud, B., & Colonna, P. (1998). Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. Journal of Cereal Science, 27(3), 267-278.
[48] Kaur, L., Singh, J., & Singh, N. (2006). Effect of cross‐linking on some properties of potato (Solanum tuberosum L.) starches. Journal of the Science of Food and Agriculture, 86(12), 1945-1954.
[49] Singh, J., Kaur, L., & Singh, N. (2004). Effect of acetylation on some properties of corn and potato starches. Starch‐Stärke, 56(12), 586-601.
[50] Sodhi, N. S., & Singh, N. (2005). Characteristics of acetylated starches prepared using starches separated from different rice cultivars. Journal of Food Engineering, 70(1), 117-127.
[51] Miles, M. J., Morris, V. J., & Ring, S. G. (1985). Gelation of amylose. Carbohydrate research, 135(2), 257-269.
[52] Miles, M. J., Morris, V. J., Orford, P. D., & Ring, S. G. (1985). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate research, 135(2), 271-281.
[53] Gidley, M. J. (1987). Factors affecting the crystalline type (A C) of native starches and model compounds: a rationalisation of observed effects in terms of polymorphic structures. Carbohydrate Research, 161(2), 301-304.
[54] Thaiudom, S., & Khantarat, K. (2011). Stability and rheological properties of fat-reduced mayonnaises by using sodium octenyl succinate starch as fat replacer. Procedia Food Science, 1, 315-321.
[55] Carrillo-Navas, H., Hernández-Jaimes, C., Utrilla-Coello, R. G., Meraz, M., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Viscoelastic relaxation spectra of some native starch gels. Food Hydrocolloids, 37, 25-33.
[56] Tester, R. F., in: Frazier, P. J., Richmond, P., Donald, A. M.(Eds.) .(1997). Starch, Structure, Functionality, Royal Society of Chemistry, London, pp. 163–171.
[57] Biliaderis, C. G., in: BeMiller, J., Whistler, R. (Eds.),(2009). Starch:Chemistry and Technology, 3rd edn., Academic Press, New York, pp. 293–372.
[58] Yamin, F. F., Lee, M., Pollak, L. M., & White, P. J. (1999). Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chemistry, 76(2), 175-181.
[59] Jane, J. L., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., & Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal chemistry, 76(5), 629-637.
[60] Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate research, 227, 103-112.
[61] Jayakody, L., Lan, H., Hoover, R., Chang, P., Liu, Q., & Donner, E. (2007). Composition, molecular structure, and physicochemical properties of starches from two grass pea (Lathyrus sativus L.) cultivars grown in Canada. Food Chemistry, 105(1), 116-125.
[62] Karimi-Maleh, H., Darabi, R., Karimi, F., Karaman, C., Shahidi, S.A., Zare, N., Baghayeri, M., Fu, L., Rostamnia, S., Rouhi, J. and Rajendran, S. (2023). State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review. Environmental Research, 115338. DOI: 10.1016/j.envres.2023.115338.
[63] Khademi, F., Raeisi, S. N., Younesi, M., Motamedzadegan, A., Rabiei, K., Shojaei, M., ... & Falsafi, M. (2022). Effect of probiotic bacteria on physicochemical, microbiological, textural, sensory properties and fatty acid profile of sour cream. Food and Chemical Toxicology, 166, 113244.