[1] Trache, D., Hussin, M.H., Chuin, C.T.H., Sabar, S., Fazita, M.N., Taiwo, O.F., Hassan, T, and Haafiz, M.M, 2016, Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review, International Journal of Biological Macromolecules, 93:789-804.
[2] Merci, A., Urbano, A., Grossmann, M.V.E, Tischer, C.A., and Mali, S., 2015, Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion, Food Research International, 73:38-43.
[3] Okhamafe, A., Igboechi, A., Obaseki T, 1991, Celluloses extracted from groundnut shell and rice husk 1: preliminary physicochemical characterization, Pharm World J, 8(4):120-130.
[4] Ting, S.S., 2019, Comparative Properties Analysis between Microcrystalline Cellulose and Cellulose Nanocrystals Extracted From Rice Straw, Malaysian Journal of Microscopy, 15(1):146-154.
[5] Katakojwala, R, Mohan, S.V., 2020, Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment, Journal of Cleaner Production, 249:119342.
[6] Ren, H., Shen, J., Pei, J., Wang, Z., Peng, Z., Fu, S., and zheng, Y., 2019, Characteristic microcrystalline cellulose extracted by combined acid and enzyme hydrolysis of sweet sorghum, Cellulose, 26(15):8367-8381.
[7] Pérez, J., Munoz-Dorado, J., De la Rubia, T., Martinez, J., 2002, Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview, International Microbiology, 5(2):53-63.
[8] Nguyen, X.T., 2006, Process for preparing microcrystalline cellulose. US. Patent 7005514.
[9] Junadi, N., Beg, M., Yunus, R.M., Ramli, R., Zianor Azrina, Z., Moshiul Alam, A., 2019, Characterization of microcrystalline cellulose isolated through the mechanochemical method, Indian Journal of Fibre & Textile Research (IJFTR),44(4):442-449.
[10] Stupińska, H., Iller, E., Zimek, Z., Wawro, D., Ciechańska, D., Kopania, E., et al, 2007, An environment-friendly method to prepare microcrystalline cellulose, Fibres & Textiles in Eastern Europe, 15:167--72.
[11] Bárdos, L., Baránková, H., 2010, Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Films, 518(23):6705-6713.
[12] Pankaj, S., Wan, Z., Keener, K., 2018, Effects of cold plasma on food quality: A review, Foods,7: 4.
[13] Pankaj, S., Thomas, S., 2016, Cold plasma applications in food packaging, Cold Plasma in Food and Agriculture: Elsevier, 293-307.
[14] Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P., 2006, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1):2-30.
[15] Souza-Corrêa, J., Oliveira, C., Nascimento, V., Wolf, L., Gómez, E., Rocha, G., et al, 2014, Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of biomass particle size in the ozonation process, Applied biochemistry, and biotechnology, 172(3):1663-1672.
[16] Shaghaleh, H., Xu, X., Liu, H., Wang, S., Hamoud, Y.A., Dong, F., et al, 2019, The effect of atmospheric pressure plasma pretreatment with various gases on the structural characteristics and chemical composition of wheat straw and applications to enzymatic hydrolysis, Energy, 176:195-210.
[17] Hemmati, F., Jafari, S.M., Kashaninejad, M., Motlagh, M.B., 2018, Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues, International journal of biological macromolecules, 120:1216-1224.
[18] Kian, L.K., Jawaid, M., Ariffin, H., Alothman, O.Y., 2017, Isolation and characterization of microcrystalline cellulose from roselle fibers, International journal of biological macromolecules, 103:931-940.
[19] Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K., 2014, Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste, Journal of Materials Physics and Chemistry, 2(1):1-8.
[20] Macedo, M.J.P.d, 2018, Modification of kapok fibers by cold plasma surface treatment for the production of composites of recycled polyethylene. Ph.D. Dissertation, Universidade Federal do Rio Grande do Note.
[21] Moosavinejad, S.M., Madhoushi, M., Vakili, M., Rasouli, D., 2019, Evaluation of degradation in chemical compounds of wood in historical buildings using FT-IR and FT-Raman vibrational spectroscopy, Maderas Ciencia y tecnología, 21(3):381-92.
[22] Bano, S., Negi, Y.S., 2017, Studies on cellulose nanocrystals isolated from groundnut shells, Carbohydrate polymers, 157:1041-1049.
[23] Macedo, M.J., Silva, G.S., Feitor, M.C., Costa, T.H., Ito, E.N., Melo, J.D., 2020, Surface modification of kapok fibers by cold plasma surface treatment. Journal of Materials Research and Technology, 9: 2467-2476.
[24] Shah, M.A., Khan, .M, Kumar, V., 2018, Biomass residue characterization for their potential application as biofuels, Journal of Thermal Analysis and Calorimetry, 134(3):2137-2145.
[25] Ciolacu, D., Ciolacu, F., Popa, V.I., 2011, Amorphous cellulose—structure and characterization, Cellulose chemistry and technology, 45(1):13-2.
[26] Ţucureanu, V., Matei, A., Avram, A.M., 2016, FTIR spectroscopy for carbon family study, Critical reviews in analytical chemistry, 46(6):502-520.
[27] Debiagi, F., Faria-Tischer, P.C., Mali, S., 2020, Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion, Cellulose, 27(4):1975-1988.
[28] Gao, L., Li, D., Gao, F., Liu, Z., Hou, Y., Chen, S., et al, 2015, Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability, Biotechnology for biofuels, 8(1):1-11.
[29] Vanneste, J., Ennaert, T., Vanhulsel, A., Sels, B., 2017, Unconventional pretreatment of lignocellulose with low‐temperature plasma, ChemSusChem, 10(1):14-31.
[30] Harini, K., Mohan, C.C., 2020, Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob, and sugarcane bagasse, International Journal of Biological Macromolecules, 163:1375-1383.
[31] Trache, D., Donnot, A., Khimeche, K., Benelmir, R., Brosse, N., 2014, Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Cabohydrate Polymers, 104:223-30.
[32] Kasiri, N., Fathi, M., 2018, Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions, International journal of biological macromolecules, 106:1023-1031.
[33] Kian, L., Saba, N., Jawaid, M., Fouad, H., 2020, Characterization of microcrystalline cellulose extracted from olive fiber, International journal of biological macromolecules, 156:347-353.
[34] Uzun, B., Yaman, E., 2015, Thermogravimetric pyrolysis of walnut shell an assessment of kinetic modeling. International Conference on Industrial Waste and Waste Water Treatment Valorization, held in Athens, Greece 21st–23rd May.
[35] Kian, L.K., Saba, N., Jawaid, M., Fouad, H., 2020, Properties and characteristics of nanocrystalline cellulose isolated from olive fiber, Carbohydrate Polymers, 241: 116423
[36] Abdullah, M., Nazir, M., Raza, M., Wahjoedi, B., Yussof, A., 2016, Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties, Journal of cleaner production, 126:686-697.
[37] Kusano, Y., Madsen, B., Berglund, L., Oksman, K., 2019, Modification of cellulose nanofibre surfaces by He/NH 3 plasma at atmospheric pressure, Cellulose, 26(12):7185-7194.
[38] de Farias, J.G.G., Cavalcante, R.C., Canabarro, B.R., Viana, H.M., Scholz, S., Simão, R.A., Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites, Cabohydrate Polymers, 165:429-436
[39] Bundaleska, N., Tatarova, E., Dias, F., da Silva, M.L., Ferreira, C., Amorim, J., 2013, Air–water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment, Journal of Physics D: Applied Physics, 47(5):055201.