[1] Gaudette, N. J., Pietrasik, Z., & Johnston, S. P. (2019). Application of taste contrast to enhance the saltiness of reduced sodium beef patties. LWT, 116, 108585.
[2] Kasprzak, M., Wilde, P., Hill, S. E., Harding, S. E., Ford, R., & Wolf, B. (2019). Non-chemically modified waxy rice starch stabilised wow emulsions for salt reduction. Food & function, 10(7), 4242-4255.
[3] Rama, R., Chiu, N., Carvalho Da Silva, M., Hewson, L., Hort, J., & Fisk, I. D. (2013). Impact of salt crystal size on in‐mouth delivery of sodium and saltiness perception from snack foods. Journal of Texture Studies, 44(5), 338-345.
[4] Noort, M. W., Bult, J. H., Stieger, M., & Hamer, R. J. (2010). Saltiness enhancement in bread by inhomogeneous spatial distribution of sodium chloride. Journal of Cereal Science, 52(3), 378-386.
[5] Tian, X., & Fisk, I. D. (2012). Salt release from potato crisps. Food & function, 3(4), 376-380.
[6] Chiu, N., Hewson, L., Fisk, I., & Wolf, B. (2015). Programmed emulsions for sodium reduction in emulsion based foods. Food & function, 6(5), 1428-1434.
[7] Devanthi, P. V. P., Linforth, R., El Kadri, H., & Gkatzionis, K. (2018). Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce. Food chemistry, 257, 243-251.
[8] Chiu, N., Tarrega, A., Parmenter, C., Hewson, L., Wolf, B., & Fisk, I. D. (2017). Optimisation of octinyl succinic anhydride starch stablised w1/o/w2 emulsions for oral destablisation of encapsulated salt and enhanced saltiness. Food hydrocolloids, 69, 450-458.
[9] Noort, M. W., Bult, J. H., & Stieger, M. (2012). Saltiness enhancement by taste contrast in bread prepared with encapsulated salt. Journal of Cereal Science, 55(2), 218-225.
[10] Ghiasi, F., Golmakani, M.-T., Eskandari, M. H., & Hosseini, S. M. H. (2022). Effect of sol-gel transition of oil phase (O) and inner aqueous phase (W1) on the physical and chemical stability of a model PUFA rich-W1/O/W2 double emulsion. Food chemistry, 376, 131929.
[11] Cui, L., Fan, J., Sun, Y., Zhu, Z., & Yi, J. (2018). The prooxidant activity of salts on the lipid oxidation of lecithin-stabilized oil-in-water emulsions. Food chemistry, 252, 28-32.
[12] Ghiasi, F., Eskandari, M. H., Golmakani, M.-T., & Hosseini, S. M. H. (2019). Development of highly stable colloidal dispersions of gelled-oil nanoparticles loaded with cuminaldehyde. Journal of colloid and interface science, 541, 65-74.
[13] Wankhede, V. P., Sharma, P., Hussain, S. A., & Singh, R. R. B. (2020). Structure and stability of W1/O/W2 emulsions as influenced by WPC and NaCl in inner aqueous phase. Journal of food science and technology, 57(9), 3482-3492.
[14] Kanouni, M., Rosano, H., & Naouli, N. (2002). Preparation of a stable double emulsion (W1/O/W2): role of the interfacial films on the stability of the system. Advances in Colloid and Interface Science, 99(3), 229-254.
[15] Ghiasi, F., Eskandari, M. H., Golmakani, M.-T., Rubio, R. G., & Ortega, F. (2021). Build-Up of a 3D Organogel Network within the Bilayer Shell of Nanoliposomes. A Novel Delivery System for Vitamin D3: Preparation, Characterization, and Physicochemical Stability. Journal of agricultural and food chemistry, 69(8), 2585-2594.
[16] Thakur, D., Singh, A., Prabhakar, P. K., Meghwal, M., & Upadhyay, A. (2022). Optimization and characterization of soybean oil-carnauba wax oleogel. LWT, 157, 113108.
[17] Kolawole, O. M., Lau, W. M., & Khutoryanskiy, V. V. (2019). Chitosan/β-glycerophosphate in situ gelling mucoadhesive systems for intravesical delivery of mitomycin-C. International Journal of Pharmaceutics: X, 1, 100007.