[1] Lacroix, M., Cooksey, K. (2005). Edible films and coatings from animal-origin proteins. Innovations in food packaging,:301-317.
[2] BeMiller, J.N, Whistler, R., Barkalow, D.G., Chen, C.C. (1993). Aloe, chia, flaxseed, okra, psyllium seed, quince seed, and tamarind gums. InIndustrial Gums (Third Edition), 227-256.
[3] Forgacs, K., Jodal, I., Kandra, L., Wagner, H., Nanasi, P. (1998) Water-soluble polysaccharides in the seeds of the quince tree (Cydonia oblonga). ACH, models in chemistry, 135(6): 953-959.
[4] Lindberg, B., Mosihuzzaman, M., Nahar, N., Abeysekera, R.M., Brown, R.G., Willison, J.H.M. (1990) An unusual (4-O-methyl-d-glucurono)-d-xylan isolated from the mucilage of seeds of the quince tree (Cydonia oblonga). Carbohydrate Research, 207(2): 307-310.
[5] Carvalho, Mr., Silva, BM., Silva, R., Valentão, Pc., Andrade, P.B., Bastos, M.L. (2010) First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells. Journal of agricultural and food chemistry, 58(6): 3366-3370
[6] Sarić-Kundalić, B., Dobeš, C., Klatte-Asselmeyer, V., Saukel, J. (2011) Ethnobotanical survey of traditionally used plants in human therapy of east, north and north-east Bosnia and Herzegovina. Journal of Ethnopharmacol, 133(3):1051-1076.
[7] Hemmati, A.A., Kalantari, H., Jalali, A., Rezai, S., Zadeh, H.H. (2012) Healing effect of quince seed mucilage on T-2 toxin-induced dermal toxicity in rabbit. Experimental and Toxicologic Pathology, 64(3):181-186
[8] Jouki, M., Mortazavi, S.A., Yazdi, F.T., Koocheki, A. (2014) Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. International Journal of Biological Macromolecules, 66: 113-124.
[9] Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., Beppu, M.M. (2011) Natural-based plasticizers and biopolymer films: A review European Polymer Journal, 47: 254-263
[10] García, M.A., Martino, M.N and Zaritzky, N.E. (2000). Lipid Addition to Improve Barrier Properties of Edible Starch-based Films and Coatings. Journal of food science, 65(6): 941-944.
[11] Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Aiba, S. and Yamamoto, N. 1997. Edible films made from gelatin, soluble starch and polyols,. Food Chemistry, 60:593-604.
[12] Bergo, P.V.A., Carvalho, R.A., Sobral, P.J.A., Dos Santos, R.M.C., Da Silva, F.B.R., Prison, J. M., Habitante. and A.M.Q. B. 2008. Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, 21(2): 85-89.
[13] Müller CMO, Yamashita F. and Laurindo JB. 2008. Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1):82-87.
[14] Silva MAd, Bierhalz ACK. and Kieckbusch TG. 2009. Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 77: 736-742 .
[15] Suyatma, N.E., Tighzert, L., Copinet, A. and Coma, V. 2005. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. Journal of Agricultural and Food Chemistry, 53(10): 3950-3957.
[16] Talja, R.A., Helén, H., Roos, Y.H. and Jouppila, K. 2007. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate polymers, 67(3): 288-295.
[17] Balaguer, M.P, Fajardo, P., Gartner, H., Gomez-Estaca, J., Gavara, R., Almenar, E. and Hernandez-Munoz, P., 2014. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin. International Journal of Food Microbiology, 173:62-71.
[18] Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei M. and Miraki, R. 2013. Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54:166-173.
[19] ASTM, 2010. Standard Test Methods for Water Vapor Transmission of Materials (E 96-95) philadelphia, PA.
[20] ASTM, 2009. Standard test method for tensile properties of thin plastic sheeting D882-02. Philadelphia, PA.
[21] Ninnemann, K., 1968. Measurement of physical properties of flexible films The science and technology of polymer films, 1:546-650
[22] Jouki, M., Tabatabaei Yazdi, F., Mortazavi, S.A. and Koocheki, A. 2013. Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62: 500-507.
[23] Razavi, S.M.A., Mohammad Amini, A. and Zahedi, Y. 2015. Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocolloids, 43:290-298.
[24] Isotton, F., Bernardo, G., Baldasso, C., Rosa, L. and Zeni, M. 2015. The plasticizer effect on preparation and properties of etherified corn starchs films. Industrial Crops and Products, 76: 717-724.
[25] McHugh, T.H. and Krochta, J.M. 1994. Sorbitol-vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry, 42: 841-845.
[26] Qiao, X., Tang, Z. and Sun, K. 2011. Plasticization of corn starch by polyol mixtures. Carbohydrate Polymers 83(2): 659-664.
[27] Bourtoom, T. 2008 Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan Sonklanakarin. Journal of Science and Technology, 30:149.
[28] Ghasemlou, M., Khodaiyan, F., Oromiehie, A. and Yarmand, M. S. 2011 Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49 (3): 378-384.
[29] Kunte, L., Gennadios, A., Cuppett, S., Hanna, M. and Weller, C.L. 1997. Cast films from soy protein isolates and fractions. Cereal Chemistry,74(2): 115-118.
[30] Rotta, J., Ozório, R.Á., Kehrwald, A.M., de Oliveira Barra, G.M., Amboni, R.D.d.M.C. and Barreto, P.L.M. 2009. Parameters of color, transparency, water solubility, wettability and surface free energy of chitosan/hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol. Materials Science and Engineering, 29 (2): 619-623.
[31] Jouki, M., Yazdi, F.T., Mortazavi, S.A. and Koocheki, A. 2014. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids 36: 9-19.
[32] Gennadios, A., Weller, C., Hanna, M and Froning, G. 1996. Mechanical and barrier properties of egg albumen films. Journal of Food Science, 61:585-589.
[33] Monedero, FM., Fabra, MJ., Talens, P. and Chiralt, A. 2009. Effect of oleic acid–beeswax mixtures on mechanical, optical and water barrier properties of soy protein isolate based films. Journal of Food Engineering, 91: 509-515.
[34] Atef, M., Rezaei. M. and Behrooz, R. 2014. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil Food Hydrocolloids, 45: 150-157.
[35] Jouki, M., Khazaei, N., Ghasemlou, M. and HadiNezhad, M. 2013. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Journal of Carbohydrate polymers, 96:39-46
[36] Hosseini, S.F, Rezaei, M., Zandi, M. and Ghavi, F.F. 2013. Preparation and functional properties of fish gelatin–chitosan blend edible films. Food chemestry, 136(3): 1490-1495.
[37] Fakhoury, F.M., Martelli S.M., Bertan, L.C., Yamashita, F., Me i,L.H. and Queiroz, F.P.C. 2012. Edible films made from blends of manioc starch and gelatin – Influence of different types of plasticizer and different levels of macromolecules on their pro perties. Journal of LWT- Food Science and Technology, 49(1): 149-154.
[38] Sothornvit, R. and Krochta, J. 2005. Plasticizers in edible films and coatings Innovations in food packaging,403-433.
[39] Piermaria, J. A., Pinotti, A., Garcia, M. A., Abraham, A. G. 2009. Films based on kefiran, an exopolysaccharide obtained from kefir grain: development and characterization. Food Hydrocolloids, 23(3): 684-690.
[40] Da Silva, G. P., Mack M. and Contiero J. 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnology advances, 27(1): 30-39.
[41] Talja, R.A., Helén, H., Roos, YH. and Jouppila, K. 2008. Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films, Carbohydrate Polymers 71:269-276.
[42] Kester, J. J. and Fennema, O. R. 1986. Edible films and coatings: a review. Food technology (USA).
[43] Arvanitoyannis, I., Nakayama A. and Aiba, S-i. 1998. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers, 36:105-119.
[44] Talja, R.A., Helén, H., Roos, Y.H. and Jouppila, K. 2007 Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate polymers, 67(3:, 288-295.
[45] Bangyekan, C., Aht-Ong, D. and Srikulkit, K. 2006. Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydrate Polymers, 63(1): 61-71.
[46] Wakai, M. and Almenar, E. 2015. Effect of the presence of montmorillonite on the solubility of whey protein isolate films in food model systems with different compositions and pH. Food Hydrocolloids, 43:.612-621
[47] Bonilla, J., Atarés, L., Vargas, M. and Chiralt, A. 2012. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering, 110(2): 208-213.