تاثیر زانتان و ساکارز بر خصوصیات فیزیکوشیمیایی، رئولوژیکی و مورفولوژیکی نشاسته‌‌های گندم و ذرت

نویسندگان
1 دانش‌آموخته دکتری، گروه علوم و صنایع غذایی، دانشکده کشاورزی واحد ورامین – پیشوا، دانشگاه آزاد اسلامی ورامین، ایران
2 دانشیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی واحد ورامین – پیشوا، دانشگاه آزاد اسلامی ورامین، ایران
3 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس تهران، ایران
4 استادیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی واحد ورامین – پیشوا، دانشگاه آزاد اسلامی ورامین، ایران
چکیده
افزایش نیاز به نشاسته در صنایع فرآوری غذایی، سبب توجه به تشخیص تأثیر سایر ترکیبات غذایی بر فرآوری غذاهای مبتنی بر نشاسته شده‌ است. زانتان و قند به ترتیب معمولاً به‌عنوان هیدروکلوئید و شیرین‌ کننده در غذاهایی بر پایه نشاسته مورد استفاده قرار می‌گیرند. این مواد سازنده می‌توانند بر خصوصیات ساختاری، حرارتی، چسبندگی (خمیری) و رئولوژیکی این نوع غذاها تأثیر بگذارند. هدف از این مطالعه، تجزیه‌ و تحلیل نحوه اثر گذاری ساکارز و زانتان بر خصوصیات فیزیکوشیمیایی، رئولوژیکی و مورفولوژیکی خمیرهای نشاسته می‎باشد. بعلاوه، مقایسه تأثیر ترکیب زانتان و ساکارز بر خمیر‌های نشاسته ذرت و گندم در این مطالعه به انجام رسیده است . در این پژوهش از غلظت زانتان 1درصد وزنی و ساکارز 5درصد وزنی انتخاب شد و مخلوط ها بر پایه نشاسته (ذرت یا نشاسته گندم ) تهیه گردید. نتایج نشان داد که در حضور و عدم حضور زانتان یک درصد وزنی و ساکارز 5 درصد وزنی ، خمیر نشاسته­ها تفاوت معنی­داری ازنظر انحلال‌پذیری، قدرت تورم، جذب آب و شفافیت خمیر داشتند (05/0 > p). سنجش­های رئولوژیکی آشکار کردند که تمام خمیرها رفتار رقیق ‌شونده با برش را نشان دادند. با اضافه کردن زانتان و ساکارز، گرانروی (ویسکوزیته) ظاهری، مدول ذخیره و مدول اتلاف خمیرهای نشاسته افزایش پیدا کرد. طیف­های مادون‌قرمز تبدیل فوریه، تغییر شدت و طول موج اوج (پیک)­های جذب را در اثر افزودن زانتان و ساکارز نشان دادند. سنجش­های میکروسکوپ الکترونی روبشی و پراش پرتوی ایکس اثبات کردند که در نتیجه افزودن زانتان و ساکارز در حین ژلاتینی شدن، تغییراتی در ساختار شبکه ایجاد گردید .. نتایج این مطالعه می‌تواند به بهبود فرآوری و پیدا کردن شرایط بهینه فرآوری جهت تولید غذاهای بر پایه نشاسته مانند غذای کودک، نان، شیرینی‌های و غیره کمک کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of xanthan and sucrose on the physicochemical, rheological and morphological properties of wheat and corn starches

نویسندگان English

aida zolelmein 1
Sara Movahhed 2
Mohammad Hossein Azizi 3
Hossein Ahmadi Chenarbon 4
1 Ph.D. Department of Food Science and Technology, College of Agriculture, Varamin - Pishva Branch, Islamic Azad University, Varamin, Iran
2 Associated Professor.Department of Food Science and Technology, College of Agriculture, Varamin - Pishva Branch, Islamic Azad University, Varamin, Iran
3 Professor.Department of Food Science and Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran.
4 Assistant Professor. Department of Agronomy, College of Agriculture, Varamin - Pishva Branch, Islamic Azad University, Varamin, Iran.
چکیده English

The increase in the need for starch in the food processing industry has led to the recognition of the effect of other food compounds on the processing of starch-based foods. Xanthan and sugar are commonly used as hydrocolloids and sweeteners, respectively, in starch-based foods. These constituents can affect the structural, thermal, adhesive (dough) and rheological properties of these types of foods. The purpose of this study is to analyze the effect of sucrose and xanthan on the physicochemical, rheological and morphological characteristics of starch pastes. In addition, the comparison of the effect of the combination of xanthan and sucrose on corn and wheat starch pastes has been done in this study. In this research, the concentration of xanthan was 1% by weight and sucrose was 5% by weight, and the mixtures were prepared based on starch (corn or wheat starch). The results showed that in the presence and absence of xanthan 1% by weight and sucrose 5% by weight, the starch dough had a significant difference in terms of solubility, swelling power, water absorption, and dough transparency (p < 0.05). Rheological tests revealed that all pastes exhibited shear thinning behavior. By adding xanthan and sucrose, the apparent viscosity, storage modulus and loss modulus of starch pastes increased. Fourier transform infrared spectra showed the change in the intensity and wavelength of absorption peaks due to the addition of xanthan and sucrose. The measurements of scanning electron microscope and X-ray diffraction proved that as a result of adding xanthan and sucrose during gelatinization, changes were made in the network structure. The results of this study can improve processing and find optimal processing conditions to produce food based on Starch like baby food, bread, sweets, etc. help.

کلیدواژه‌ها English

Starch
Xanthan
Sucrose
Physicochemical properties
Rheology
[1] Fu, Z. Zhang, L. Ren, M. H. & BeMiller, J. N. (2019). Developments in Hydroxypropylation of Starch: a review. Starch‐Stärke, 71(1-2): 1800167.
[2] Xu, Y. Chen, X. Xu, X. Wang, B. Du, X. & Chen, P. (2020). Investigation on the Crystal Transition of Maize Starch from Semi-crystalline to Amorphous State. Journal of Cereal Science, 92: 102924.
[3] Shahzad, S. A. Hussain, S. Mohamed, A. A. Alamri, M. S. Qasem, A. A. A. & Osman, M. A. (2019). Pasting, thermal, textural and rheological properties of rice starch blended with 6 different hydrocolloid gums. Pakistan Journal of Agricultural Sciences, 56(3).
[4] Habibi, H. & Khosravi-Darani, K. (2017). Effective variables on production and structure of xanthan gum and its food applications: A review. Hournal of Agricultural Biotechnology. 10: 130-140.
[5] Zheng, Y. Sun, W. Yang, W. Chen, S. Liu, D. Tian, J. & Ye, X. (2020). The influence of xanthan gum on rheological properties and in vitro digestibility of kudzu (Pueraria lobata) starch. Starch‐Stärke, 72(3-4), 1900139.
[6] Pourmohammadi, K. Abedi, E. Hashemi, S. M. B. & Torri, L. (2018). Effects of sucrose, isomalt and maltodextrin on microstructural, thermal, pasting and textural properties of wheat and cassava starch gel. International journal of biological macromolecules, 120, 1935-1943.
[7] Abdel‐Aal, E. S. M. Rabalski, I. Hernandez, M. L’Hocine, L. Patterson, C. A. & Hucl, P. (2019). Effect of sodium chloride, sucrose, and xanthan gum on pasting properties and gel syneresis of hairless canary seed starch. Cereal Chemistry, 96(5), 908-919.
[8] Zolelmein, A. Movahhed, S. Azizi, M. H. & Ahmadi Chenarbon, H. (2019). Assessment of simultaneous addition of sucrose and xanthan effects on the thermal, pasting, and rheological behavior of corn starch. Journal of texture studies, 51(3), 453-463.
[9] Pratiwi, M. Faridah, D. N. & Lioe, H. N. (2018). Structural changes to starch after acid hydrolysis, debranching, autoclaving‐cooling cycles, and heat moisture treatment (HMT): A review. Starch‐Stärke, 70(1-2), 1700028.
[10] De Souza Gomes, D. do Prado Cordoba, L. Rosa, L. S. Spier, M. R. Schnitzler, E. & Waszczynskyj, N. (2018). Thermal, pasting properties and morphological characterization of pea starch (Pisum sativum L.), rice starch (Oryza sativa) and arracacha starch (Arracacia xanthorrhiza) blends, established by simplex-centroid design. Thermochimica Acta, 662, 90-99.
[11] McGrance, S. J. Cornell, H. J. & Rix, C. J. (1998). A simple and rapid colorimetric method for the determination of amylose in starch products. Starch‐Stärke, 50(4), 158-163.
[12] Nadiha, M. N. Fazilah, A. Bhat, R. & Karim, A. A. (2010). Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chemistry, 121(4), 1053-1059.
[13] Hedayati, S. & Niakousari, M. (2018). Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food hydrocolloids, 81, 1-5.
[14] Waliszewski, K. N. Aparicio, M. A. Bello, L. A. & Monroy, J. A. (2003). Changes of banana starch by chemical and physical modification. Carbohydrate polymers, 52(3), 237-242.
[15] Chang, Y. H. Lim, S. T. & Yoo, B. (2004). Dynamic rheology of corn starch–sugar composites. Journal of Food Engineering, 64(4), 521-527.
[16] Sani, I. K., & Alizadeh, M. (2022). Isolated mung bean protein-pectin nanocomposite film containing true cardamom extract microencapsulation/CeO2 nanoparticles/graphite carbon quantum dots: Investigating fluorescence, photocatalytic and antimicrobial properties. Food Packaging and Shelf Life, 33, 100912.
[17] Rasul, N. H., Asdagh, A., Pirsa, S., Ghazanfarirad, N., & Sani, I. K. (2022). Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Materials Research Express, 9(2), 025306.
[18] Kim, H. S. Patel, B. & BeMiller, J. N. (2013). Effects of the amylose–amylopectin ratio on starch–hydrocolloid interactions. Carbohydrate polymers, 98(2), 1438-1448.
[19] Li, W. Wu, G. Luo, Q. Jiang, H. Zheng, J. Ouyang, S. & Zhang, G. (2016). Effects of removal of surface proteins on physicochemical and structural properties of A-and B-starch isolated from normal and waxy wheat. Journal of food science and technology, 53(6), 2673-2685.
[20] Jayakody, L. Lan, H. Hoover, R. Chang, P. Liu, Q. & Donner, E. (2007). Composition, molecular structure, and physicochemical properties of starches from two grass pea (Lathyrus sativus L.) cultivars grown in Canada. Food Chemistry, 105(1), 116-125.
[21] Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate polymers, 45(3), 253-267.
[22] Puri, R. Gill, B. S. & Khetra, Y. (2014). Effect of Acacia gum, NaCl, and sucrose on physical properties of lotus stem starch. International journal of food science, 2014.
[23] Chen, H. H. Wang, Y. S. Leng, Y. Zhao, Y. & Zhao, X. (2014). Effect of NaCl and sugar on physicochemical properties of flaxseed polysaccharide-potato starch complexes. Science Asia, 40(1), 60-68.
[24] Chaisawang, M. & Suphantharika, M. (2006). Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocolloids, 20(5), 641-649.
[25] Chao, C. Yu, J. Wang, S. Copeland, L. & Wang, S. (2018). Mechanisms underlying the formation of complexes between maize starch and lipids. Journal of agricultural and food chemistry, 66(1), 272-278.
[26] Koo, S. H. Lee, K. Y. & Lee, H. G. (2010). Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food hydrocolloids, 24(6-7), 619-625.
[27] Nagano, T. Tamaki, E. & Funami, T. (2008). Influence of guar gum on granule morphologies and rheological properties of maize starch. Carbohydrate Polymers, 72(1), 95-101.
[28] Morikawa, K. & Nishinari, K. (2000). Effects of concentration dependence of retrogradation behaviour of dispersions for native and chemically modified potato starch. Food Hydrocolloids, 14(4), 395-401.
[29] Wang, B. Wang, L. J. Li, D. Özkan, N. Li, S. J. & Mao, Z. H. (2009). Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose. Carbohydrate Polymers, 77(3), 472-481.
[30] Kashyap, P. & Jindal, N. (2019). Effect of date syrup on physicochemical, pasting, textural, rheological and morphological properties of sweet potato starch. Journal of Food Measurement and Characterization. 13(3): 2398-2405.
[31] Von Borries-Medrano, E. Jaime-Fonseca, M. R. & Aguilar-Méndez, M. A. (2019). Tapioca starch-galactomannan systems: Comparative studies of rheological and textural properties. International journal of biological macromolecules, 122, 1173-1183.
[32] Pongsawatmanit, R. Temsiripong, T. & Suwonsichon, T. (2007). Thermal and rheological properties of tapioca starch and xyloglucan mixtures in the presence of sucrose. Food research international, 40(2), 239-248.
[33] Lopez-Silva, M. Bello-Perez, L. A. Agama-Acevedo, E. & Alvarez-Ramirez, J. (2019). Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch. Food Hydrocolloids, 97, 105212.
[34] Li, C. Gong, B. Hu, Y. Liu, X. Guan, X. & Zhang, B. (2020). Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches. Food Hydrocolloids, 105, 105823.
[35] Luckett, C. R. & Wang, Y. J. (2012). Effects of β-amylolysis on the resistant starch formation of debranched corn starches. Journal of agricultural and food chemistry, 60(18), 4751-4757.
[36] Hasjim, J. & Jane, J. L. (2009). Production of resistant starch by extrusion cooking of acid‐modified normal‐maize starch. Journal of food science, 74(7), C556-C562.