[1] Fu, Z. Zhang, L. Ren, M. H. & BeMiller, J. N. (2019). Developments in Hydroxypropylation of Starch: a review. Starch‐Stärke, 71(1-2): 1800167.
[2] Xu, Y. Chen, X. Xu, X. Wang, B. Du, X. & Chen, P. (2020). Investigation on the Crystal Transition of Maize Starch from Semi-crystalline to Amorphous State. Journal of Cereal Science, 92: 102924.
[3] Shahzad, S. A. Hussain, S. Mohamed, A. A. Alamri, M. S. Qasem, A. A. A. & Osman, M. A. (2019). Pasting, thermal, textural and rheological properties of rice starch blended with 6 different hydrocolloid gums. Pakistan Journal of Agricultural Sciences, 56(3).
[4] Habibi, H. & Khosravi-Darani, K. (2017). Effective variables on production and structure of xanthan gum and its food applications: A review. Hournal of Agricultural Biotechnology. 10: 130-140.
[5] Zheng, Y. Sun, W. Yang, W. Chen, S. Liu, D. Tian, J. & Ye, X. (2020). The influence of xanthan gum on rheological properties and in vitro digestibility of kudzu (Pueraria lobata) starch. Starch‐Stärke, 72(3-4), 1900139.
[6] Pourmohammadi, K. Abedi, E. Hashemi, S. M. B. & Torri, L. (2018). Effects of sucrose, isomalt and maltodextrin on microstructural, thermal, pasting and textural properties of wheat and cassava starch gel. International journal of biological macromolecules, 120, 1935-1943.
[7] Abdel‐Aal, E. S. M. Rabalski, I. Hernandez, M. L’Hocine, L. Patterson, C. A. & Hucl, P. (2019). Effect of sodium chloride, sucrose, and xanthan gum on pasting properties and gel syneresis of hairless canary seed starch. Cereal Chemistry, 96(5), 908-919.
[8] Zolelmein, A. Movahhed, S. Azizi, M. H. & Ahmadi Chenarbon, H. (2019). Assessment of simultaneous addition of sucrose and xanthan effects on the thermal, pasting, and rheological behavior of corn starch. Journal of texture studies, 51(3), 453-463.
[9] Pratiwi, M. Faridah, D. N. & Lioe, H. N. (2018). Structural changes to starch after acid hydrolysis, debranching, autoclaving‐cooling cycles, and heat moisture treatment (HMT): A review. Starch‐Stärke, 70(1-2), 1700028.
[10] De Souza Gomes, D. do Prado Cordoba, L. Rosa, L. S. Spier, M. R. Schnitzler, E. & Waszczynskyj, N. (2018). Thermal, pasting properties and morphological characterization of pea starch (Pisum sativum L.), rice starch (Oryza sativa) and arracacha starch (Arracacia xanthorrhiza) blends, established by simplex-centroid design. Thermochimica Acta, 662, 90-99.
[11] McGrance, S. J. Cornell, H. J. & Rix, C. J. (1998). A simple and rapid colorimetric method for the determination of amylose in starch products. Starch‐Stärke, 50(4), 158-163.
[12] Nadiha, M. N. Fazilah, A. Bhat, R. & Karim, A. A. (2010). Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chemistry, 121(4), 1053-1059.
[13] Hedayati, S. & Niakousari, M. (2018). Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food hydrocolloids, 81, 1-5.
[14] Waliszewski, K. N. Aparicio, M. A. Bello, L. A. & Monroy, J. A. (2003). Changes of banana starch by chemical and physical modification. Carbohydrate polymers, 52(3), 237-242.
[15] Chang, Y. H. Lim, S. T. & Yoo, B. (2004). Dynamic rheology of corn starch–sugar composites. Journal of Food Engineering, 64(4), 521-527.
[16] Sani, I. K., & Alizadeh, M. (2022). Isolated mung bean protein-pectin nanocomposite film containing true cardamom extract microencapsulation/CeO2 nanoparticles/graphite carbon quantum dots: Investigating fluorescence, photocatalytic and antimicrobial properties. Food Packaging and Shelf Life, 33, 100912.
[17] Rasul, N. H., Asdagh, A., Pirsa, S., Ghazanfarirad, N., & Sani, I. K. (2022). Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Materials Research Express, 9(2), 025306.
[18] Kim, H. S. Patel, B. & BeMiller, J. N. (2013). Effects of the amylose–amylopectin ratio on starch–hydrocolloid interactions. Carbohydrate polymers, 98(2), 1438-1448.
[19] Li, W. Wu, G. Luo, Q. Jiang, H. Zheng, J. Ouyang, S. & Zhang, G. (2016). Effects of removal of surface proteins on physicochemical and structural properties of A-and B-starch isolated from normal and waxy wheat. Journal of food science and technology, 53(6), 2673-2685.
[20] Jayakody, L. Lan, H. Hoover, R. Chang, P. Liu, Q. & Donner, E. (2007). Composition, molecular structure, and physicochemical properties of starches from two grass pea (Lathyrus sativus L.) cultivars grown in Canada. Food Chemistry, 105(1), 116-125.
[21] Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate polymers, 45(3), 253-267.
[22] Puri, R. Gill, B. S. & Khetra, Y. (2014). Effect of Acacia gum, NaCl, and sucrose on physical properties of lotus stem starch. International journal of food science, 2014.
[23] Chen, H. H. Wang, Y. S. Leng, Y. Zhao, Y. & Zhao, X. (2014). Effect of NaCl and sugar on physicochemical properties of flaxseed polysaccharide-potato starch complexes. Science Asia, 40(1), 60-68.
[24] Chaisawang, M. & Suphantharika, M. (2006). Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocolloids, 20(5), 641-649.
[25] Chao, C. Yu, J. Wang, S. Copeland, L. & Wang, S. (2018). Mechanisms underlying the formation of complexes between maize starch and lipids. Journal of agricultural and food chemistry, 66(1), 272-278.
[26] Koo, S. H. Lee, K. Y. & Lee, H. G. (2010). Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food hydrocolloids, 24(6-7), 619-625.
[27] Nagano, T. Tamaki, E. & Funami, T. (2008). Influence of guar gum on granule morphologies and rheological properties of maize starch. Carbohydrate Polymers, 72(1), 95-101.
[28] Morikawa, K. & Nishinari, K. (2000). Effects of concentration dependence of retrogradation behaviour of dispersions for native and chemically modified potato starch. Food Hydrocolloids, 14(4), 395-401.
[29] Wang, B. Wang, L. J. Li, D. Özkan, N. Li, S. J. & Mao, Z. H. (2009). Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose. Carbohydrate Polymers, 77(3), 472-481.
[30] Kashyap, P. & Jindal, N. (2019). Effect of date syrup on physicochemical, pasting, textural, rheological and morphological properties of sweet potato starch. Journal of Food Measurement and Characterization. 13(3): 2398-2405.
[31] Von Borries-Medrano, E. Jaime-Fonseca, M. R. & Aguilar-Méndez, M. A. (2019). Tapioca starch-galactomannan systems: Comparative studies of rheological and textural properties. International journal of biological macromolecules, 122, 1173-1183.
[32] Pongsawatmanit, R. Temsiripong, T. & Suwonsichon, T. (2007). Thermal and rheological properties of tapioca starch and xyloglucan mixtures in the presence of sucrose. Food research international, 40(2), 239-248.
[33] Lopez-Silva, M. Bello-Perez, L. A. Agama-Acevedo, E. & Alvarez-Ramirez, J. (2019). Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch. Food Hydrocolloids, 97, 105212.
[34] Li, C. Gong, B. Hu, Y. Liu, X. Guan, X. & Zhang, B. (2020). Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches. Food Hydrocolloids, 105, 105823.
[35] Luckett, C. R. & Wang, Y. J. (2012). Effects of β-amylolysis on the resistant starch formation of debranched corn starches. Journal of agricultural and food chemistry, 60(18), 4751-4757.
[36] Hasjim, J. & Jane, J. L. (2009). Production of resistant starch by extrusion cooking of acid‐modified normal‐maize starch. Journal of food science, 74(7), C556-C562.