بررسی برهم کنش صمغ فیبر ذرت با آنزیم α-آمیلاز و α-گلوکوزیداز و تاثیر آن بر فعالیت ممانعت کنندگی آنزیم‌ها

نویسندگان
1 گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران
2 گروه فراوری محصولات شیلاتی، دانشکده علوم دریایی، دانشکده تربیت مدرس، نور، ایران
چکیده
بیشترین ترکیب جانبی حاصل از فراوری ذرت در صنعت تولید نشاسته از ذرت، سبوس می‌باشد که فقط به صورت غذای دام از آن استفاده می‌شود. در این مطالعه خواص ضد اکسایشی و ضد دیابتی صمغ فیبر ذرت دارای فنل (FAX) و بدون فنل (Y) از سبوس ذرت مورد بررسی قرار گرفت. همچنین جهت بررسی سازوکار ممانعت کنندگی دو آنزیم α-آمیلاز و α-گلوکوزیداز، میزان شدت فلوئورسانس ذاتی و خارجی اندازه گیری شد. نتایج نشان داد بیشترین خاصیت مهارکنندگی رادیکال DPPH مربوط به فیبرFAX µmolTE/g399/0 ± 74/39، و کمترین مربوط به فیبر استخراج شده Y µmolTE/g 257/0 ± 73/3 می‌باشد. همچنین نتایج فعالیت مهارکنندگی رادیکال کاتیونی ABTS مربوط به نمونه FAXبرابر با molTE/g µ 99/2 ± 10/137 بوده و نمونه Y molTE/g µ 17/1± 68/29 بود. میزان مهار کنندگی فعالیت آنزیم α-آمیلاز خوکی نمونه FAX بیشتر از Y بوده و اختلاف معنی‌داری با یکدیگر داشتند (05/0 > p). نمونه فیبرFAX بیشترین تاثیر را بر مهار فعالیت آنزیم گلوکوزیداز موشی داشت (15/26درصد) در حالیکه نمونه Yدر غلظت‌های استفاده شده فاقد خاصیت مهار آنزیم بود. همچنین کاهش شدت فلوئورسانس در اثر افزودن غلظت­های مختلف هردو فیبر به آنزیم α-آمیلاز و α-گلوکوزیداز مشاهده شد ولی این شدت برای نمونه FAX بیشتر بود. فیبرهای تولیدی توانایی مهار کنندگی هر دو آنزیم را از طریق ایجاد تغییر در ساختمان سوم آنزیم به وسیله پیوندهای غیرکوالانسی را داشتند. بطور کلی نتایج نشان داد که فیبر با میزان فنل بالا از سبوس ذرت می‌تواند به عنوان یک منبع طبیعی دارای فعالیت ضد اکسایشی ومهار فعالیت آنزیم های α-آمیلاز و α-گلوکوزیداز محسوب شده و در تولید مواد غذایی فراسودمند مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the interaction of maize fiber gum with α-amylase and α-glucosidase enzymes and its effect on enzymes inhibition activity

نویسندگان English

Ruhallah Ejtemaei 1
Hassan Ahmadi 1
Maryam Jalili Safaryan 1
Mehdi Tabarsa 2
1 Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
2 Department of Seafood Processing, Tarbiat Modares University, Nur, Iran
چکیده English

Maize bran is the most common by-product of maize milling process and it is mainly used as animal feed. In this study, antioxidant and anti-diabetic activities of two types of maize fiber gum, FAX (fiber with phenolic compounds) and Y (fiber without phenolic compounds), were examined. In addition, intrinsic and extrinsic fluorescence intensity was assessed to explore the inhibitory mechanism of two enzymes, α-amylase and α-glucosidase. The results revealed that FAX had the highest DPPH radical scavenging property at 39.74 ± 0.399 µmolTE/g, whereas Y had 3.73 ± 0.257 µmolTE/g. Furthermore, the ABTS cationic radical scavenging activity in FAX was 137.10 ± 2.99 µmolTE/g, whereas Y was 29.68 ± 1.17 µmolTE/g. FAX had a higher inhibition rate of porcine α-amylase enzyme activity than Y, and the difference was significant (p ˂ 0.05). FAX inhibited rat intestinal α-glucosidase activity the highest (26.15%), whereas Y had no enzyme inhibition property at the concentration used. In addition, applying different concentrations of both fibers to α-amylase and α-glucosidase enzymes resulted in a decrease in fluorescence intensity; however, this intensity was higher for FAX. Both fibers were able of inhibiting both enzymes by changing the third structure of the enzyme via non-covalent bonds. Overall, the results showed that high phenolic fiber from maize bran can be consider as a natural source of antioxidant activity and inhibition of α-amylase and α-glucosidase enzymes, and that it can be used in the production of functional foods.

کلیدواژه‌ها English

Extraction
maize fiber gum
Anti-diabetic
phenolic compounds
[1] Kumar, D., Chatli, M.K., Singh, R., and Mehta, N. 2016. Antioxidant and
antimicrobial activity of camel milk casein hydrolysates and its fractions. Small
Ruminant Research. 139: 20–25.
[2] Burton, P.M., Monro, J.A., Alvarez, L., and Gallagher, E. 2011 Glycemic impact
and health: new horizons in white bread formulations. Critical Reviews in Food
Science and Nutrition. 51(10): 965-982.
[3] Nasri, M. 2017. Protein hydrolysates and biopeptides: production, biological
activities, and applications in foods and health benefits. A Review. In: Advances in
Food and Nutrition Research. Elsevier. 81: 109-159.
[4] Shishehbor, F., kazem assareh, E., veisi, M., and Saki Malehi, A. 2017. Roasted
chickpea flour decreases glycemic index and glycemic load of white bread. Iranian
Journal of Endocrinology and Metabolism. 19(1): 10-17.
[5] Association, A.D. 2014. Diagnosis and classification of diabetes mellitus. Diabetes
Care. 37(1): 81-90.
[6] Adisakwattana, S., Lerdsuwankij, O., Poputtachai, U., Minipun, A., and
Suparpprom, C. 2011. Inhibitory activity of cinnamon bark species and their
combination effect with acarbose against intestinal α-glucosidase and pancreatic α-
amylase. Plant Foods for Human Nutrition. 66(2): 143-148.
[7] Ngoh, Y.Y., and Gan, C.Y. 2016. Enzyme-assisted extraction and identification of
antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus
vulgaris cv. Pinto). Food Chemistry. 190: 331-337.
[8] Fei, Q., Gao, Y., Zhang, X., Sun, Y., Hu, B., Zhou, L., ... and Zeng, X. 2014. Effects of Oolong tea polyphenols, EGCG, and EGCG3 ″Me on pancreatic α-amylase activity in vitro. Journal of Agricultural and Food Chemistry. 62(39): 9507-9514.
[9] Zaharudin, N., Salmeán, A. A., and Dragsted, L. O. 2018. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase. Food Chemistry. 245: 1196-1203.
[10] Wang, K., Li, M., Han, Q., Fu, R., and Ni, Y. 2021. Inhibition of α-amylase activity by insoluble and soluble dietary fibers from kiwifruit (Actinidia deliciosa). Food Bioscience. 42: 101057.
[11] Dhital, S., Gidley, M. J., and Warren, F. J. 2015. Inhibition of α-amylase activity by
cellulose: Kinetic analysis and nutritional implications. Carbohydrate Polymers. 123:
305–312 .
[12] Rose, D. J., Inglett, G. E., and Liu, S. X. 2010. Utilisation of corn (Zea mays) bran and corn fiber in the production of food components. Journal of the Science of Food and Agriculture. 90(6): 915-924.
[13] Yadav, M. P., Cooke, P., Johnston, D. B., and Hicks, K. B. 2010. Effect of protein rich components on the emulsifying properties of corn fiber gum. Cereal Chemistry. 87(2): 8994.
[14] Ayala-Soto, F. E., Serna-Saldívar, S. O., García-Lara, S., and Pérez-Carrillo, E. 2014. Hydroxycinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources, Food Hydrocolloids. 35: 471-475.
[15] Herrera-Balandrano, D. D., Báez-González, J. G., Carvajal-Millán, E., Muy-Rangel, D., Urías-Orona, V., Martínez-López, A. L., ... and Niño-Medina, G. 2020. Alkali-extracted feruloylated arabinoxylans from nixtamalized maize bran byproduct: A synonymous with soluble antioxidant dietary fiber. Waste and Biomass Valorization. 11(2): 403-409.
[16] Jalili Safaryan, M., Ahmadi, H., Barzegar, M., Tabarsa, M., & Udenigwe, C. 2022. Evaluation of inhibitory effect of alpha-amylase and alpha-glucosidase by interaction phenolic compounds, soluble fiber, and protein extracted from green lentils. Journal of Food Science and Technology (Iran), 19(122), 35-45.
[17] Rajaei, A., Barzegar, M., Mobarez, A. M., Sahari, M. A., and Esfahani, Z. H. 2010.
Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food and Chemical Toxicology. 48: 107-112.
[18] Thetsrimuang, C., Khammuang, S., Chiablaem, K., Srisomsap, C., and Sarnthima, R. 2011. Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chemistry. 128(3): 634-639.
[19] Connolly, A., Piggott, C.O., and FitzGerald, R.J. 2014. In vitro α-glucosidase,
angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of
brewers' spent grain protein hydrolysates. Food Research International. 56: 100-107.

[20] Zheng, Y., Tian, J., Yang, W., Chen, S., Liu, D., Fang, H., Zhang, H., and Ye, X. 2020. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry. 317:126346.
[21] Perez, A. A., Carrara, C. R., Sánchez, C. C., Patino, J. M., and Santiago, L. G. 2009. Interactions between milk whey protein and polysaccharide in solution. Food Chemistry, 116: 104–113.

[22] Xiong, X., Li, M., Xie, J., Jin, Q., Xue, B, and Sun, T. 2013. Antioxidant activity of xanthan oligosaccharides prepared by different degradation methods. Carbohydrate Polymers. 92(2): 1166-1171.
[23] Wang, X., Wang, J., Zhang, J., Zhao, B., Yao, J., and Wang, Y. 2010. Structure–antioxidant relationships of sulfated galactomannan from guar gum. International Journal of Biological Macromolecules. 46(1): 59-66.
[24] Rivas, S., Conde, E., Moure, A., Domínguez, H., and Parajó, J. C. 2013. Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks. Food Chemistry. 141(1): 495-502.
[25] Malunga, L.N., Beta, T. 2015. Antioxidant capacity of water-extractable arabinoxylan from commercial barley, wheat, and wheat fractions. Cereal Chemistry. 92: 29–36.
[26] Paz-Samaniego, R., Méndez-Encinas, M., Fierro-Islas, J.M., Marquez-Escalante, J., Rascón-Chu, A., Martinez-Lopez, A.L., Carvajal-Millan, E. 2015: Chapter 7 ferulated arabinoxylans recovered from low-value maize by-products: gelation and antioxidant capacity. In: Warren, B. (ed.) Ferulic Acid: Antioxidant Properties, Uses and Potential Health Benefits, pp. 151–164. Nova Science Publishers, New York.
[27] Kim, K. T., Rioux, L. E, and Turgeon, S. L. 2014. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry. 98: 27–33.
[28] Yan, J. K., Wu, L. X., Cai, W. D., Xiao, G. S., Duan, Y., and Zhang, H. 2019. Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran. Food Chemistry. 298: 124987.
[29] Sun, L., Chen, W., Meng, Y., Yang, X., Yuan, L., and Guo, Y. 2016. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chemistry. 208: 51-60.

[30] Kusano, R., Andou, H., Fujieda, M., Tanaka, T., Matsuo, Y., and Kouno, I. 2008. Polymer-like polyphenols of black tea and their lipase and amylase inhibitory activities. Chemical and Pharmaceutical Bulletin. 56(3): 266-272.
[31] Li, H., Tanaka, T., Zhang, Y. J., Yang, C. R., and Kouno, I. 2007. Rubusuaviins A—F, monomeric and oligomeric ellagitannins from Chinese sweet tea and their α-amylase inhibitory activity. Chemical and Pharmaceutical Bulletin. 55(9): 1325-1331.
[32] Santos‐Buelga, C., and Scalbert, A. 2000. Proanthocyanidins and tannin‐like compounds–nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture. 80(7): 1094-1117.
[33] Jiang, Z., Yu, G., Liang, Y., Song, T., Zhu, Y., Ni, H., Yamaguchi, K., Tatsuya Oda, T. 2019. Inhibitory effects of a sulfated polysaccharide isolated from edible red alga Bangia fusco-purpurea on α-amylase and α-glucosidase. Bioscience, Biotechnology, and Biochemistry. 83: 2065–2074.
[34] Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., and Chou, C. J. 2008.Flavonoids for controlling starch digestion: Structural requirements for inhibiting human alpha-amylase. Journal of Medicinal Chemistry. 51: 3555–3561.
[35] Toeller, M. 1994. α‐Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects. European Journal of Clinical Investigation. 24(S3): 31-35.
[36] McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A., and Stewart, D. 2005. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry. 53(7): 2760-2766.
[37] Hua, M., Sun, Y., Shao, Z., Lu, J., Lu, Y., and Li, Z. 2020. Functional soluble dietary fiber from ginseng residue: Polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. Food Biochemistry. 44(12), e13524.