[1] Kumar, D., Chatli, M.K., Singh, R., and Mehta, N. 2016. Antioxidant and
antimicrobial activity of camel milk casein hydrolysates and its fractions. Small
Ruminant Research. 139: 20–25.
[2] Burton, P.M., Monro, J.A., Alvarez, L., and Gallagher, E. 2011 Glycemic impact
and health: new horizons in white bread formulations. Critical Reviews in Food
Science and Nutrition. 51(10): 965-982.
[3] Nasri, M. 2017. Protein hydrolysates and biopeptides: production, biological
activities, and applications in foods and health benefits. A Review. In: Advances in
Food and Nutrition Research. Elsevier. 81: 109-159.
[4] Shishehbor, F., kazem assareh, E., veisi, M., and Saki Malehi, A. 2017. Roasted
chickpea flour decreases glycemic index and glycemic load of white bread. Iranian
Journal of Endocrinology and Metabolism. 19(1): 10-17.
[5] Association, A.D. 2014. Diagnosis and classification of diabetes mellitus. Diabetes
Care. 37(1): 81-90.
[6] Adisakwattana, S., Lerdsuwankij, O., Poputtachai, U., Minipun, A., and
Suparpprom, C. 2011. Inhibitory activity of cinnamon bark species and their
combination effect with acarbose against intestinal α-glucosidase and pancreatic α-
amylase. Plant Foods for Human Nutrition. 66(2): 143-148.
[7] Ngoh, Y.Y., and Gan, C.Y. 2016. Enzyme-assisted extraction and identification of
antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus
vulgaris cv. Pinto). Food Chemistry. 190: 331-337.
[8] Fei, Q., Gao, Y., Zhang, X., Sun, Y., Hu, B., Zhou, L., ... and Zeng, X. 2014. Effects of Oolong tea polyphenols, EGCG, and EGCG3 ″Me on pancreatic α-amylase activity in vitro. Journal of Agricultural and Food Chemistry. 62(39): 9507-9514.
[9] Zaharudin, N., Salmeán, A. A., and Dragsted, L. O. 2018. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase. Food Chemistry. 245: 1196-1203.
[10] Wang, K., Li, M., Han, Q., Fu, R., and Ni, Y. 2021. Inhibition of α-amylase activity by insoluble and soluble dietary fibers from kiwifruit (Actinidia deliciosa). Food Bioscience. 42: 101057.
[11] Dhital, S., Gidley, M. J., and Warren, F. J. 2015. Inhibition of α-amylase activity by
cellulose: Kinetic analysis and nutritional implications. Carbohydrate Polymers. 123:
305–312 .
[12] Rose, D. J., Inglett, G. E., and Liu, S. X. 2010. Utilisation of corn (Zea mays) bran and corn fiber in the production of food components. Journal of the Science of Food and Agriculture. 90(6): 915-924.
[13] Yadav, M. P., Cooke, P., Johnston, D. B., and Hicks, K. B. 2010. Effect of protein rich components on the emulsifying properties of corn fiber gum. Cereal Chemistry. 87(2): 8994.
[14] Ayala-Soto, F. E., Serna-Saldívar, S. O., García-Lara, S., and Pérez-Carrillo, E. 2014. Hydroxycinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources, Food Hydrocolloids. 35: 471-475.
[15] Herrera-Balandrano, D. D., Báez-González, J. G., Carvajal-Millán, E., Muy-Rangel, D., Urías-Orona, V., Martínez-López, A. L., ... and Niño-Medina, G. 2020. Alkali-extracted feruloylated arabinoxylans from nixtamalized maize bran byproduct: A synonymous with soluble antioxidant dietary fiber. Waste and Biomass Valorization. 11(2): 403-409.
[16] Jalili Safaryan, M., Ahmadi, H., Barzegar, M., Tabarsa, M., & Udenigwe, C. 2022. Evaluation of inhibitory effect of alpha-amylase and alpha-glucosidase by interaction phenolic compounds, soluble fiber, and protein extracted from green lentils. Journal of Food Science and Technology (Iran), 19(122), 35-45.
[17] Rajaei, A., Barzegar, M., Mobarez, A. M., Sahari, M. A., and Esfahani, Z. H. 2010.
Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food and Chemical Toxicology. 48: 107-112.
[18] Thetsrimuang, C., Khammuang, S., Chiablaem, K., Srisomsap, C., and Sarnthima, R. 2011. Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chemistry. 128(3): 634-639.
[19] Connolly, A., Piggott, C.O., and FitzGerald, R.J. 2014. In vitro α-glucosidase,
angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of
brewers' spent grain protein hydrolysates. Food Research International. 56: 100-107.
[20] Zheng, Y., Tian, J., Yang, W., Chen, S., Liu, D., Fang, H., Zhang, H., and Ye, X. 2020. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry. 317:126346.
[21] Perez, A. A., Carrara, C. R., Sánchez, C. C., Patino, J. M., and Santiago, L. G. 2009. Interactions between milk whey protein and polysaccharide in solution. Food Chemistry, 116: 104–113.
[22] Xiong, X., Li, M., Xie, J., Jin, Q., Xue, B, and Sun, T. 2013. Antioxidant activity of xanthan oligosaccharides prepared by different degradation methods. Carbohydrate Polymers. 92(2): 1166-1171.
[23] Wang, X., Wang, J., Zhang, J., Zhao, B., Yao, J., and Wang, Y. 2010. Structure–antioxidant relationships of sulfated galactomannan from guar gum. International Journal of Biological Macromolecules. 46(1): 59-66.
[24] Rivas, S., Conde, E., Moure, A., Domínguez, H., and Parajó, J. C. 2013. Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks. Food Chemistry. 141(1): 495-502.
[25] Malunga, L.N., Beta, T. 2015. Antioxidant capacity of water-extractable arabinoxylan from commercial barley, wheat, and wheat fractions. Cereal Chemistry. 92: 29–36.
[26] Paz-Samaniego, R., Méndez-Encinas, M., Fierro-Islas, J.M., Marquez-Escalante, J., Rascón-Chu, A., Martinez-Lopez, A.L., Carvajal-Millan, E. 2015: Chapter 7 ferulated arabinoxylans recovered from low-value maize by-products: gelation and antioxidant capacity. In: Warren, B. (ed.) Ferulic Acid: Antioxidant Properties, Uses and Potential Health Benefits, pp. 151–164. Nova Science Publishers, New York.
[27] Kim, K. T., Rioux, L. E, and Turgeon, S. L. 2014. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry. 98: 27–33.
[28] Yan, J. K., Wu, L. X., Cai, W. D., Xiao, G. S., Duan, Y., and Zhang, H. 2019. Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran. Food Chemistry. 298: 124987.
[29] Sun, L., Chen, W., Meng, Y., Yang, X., Yuan, L., and Guo, Y. 2016. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chemistry. 208: 51-60.
[30] Kusano, R., Andou, H., Fujieda, M., Tanaka, T., Matsuo, Y., and Kouno, I. 2008. Polymer-like polyphenols of black tea and their lipase and amylase inhibitory activities. Chemical and Pharmaceutical Bulletin. 56(3): 266-272.
[31] Li, H., Tanaka, T., Zhang, Y. J., Yang, C. R., and Kouno, I. 2007. Rubusuaviins A—F, monomeric and oligomeric ellagitannins from Chinese sweet tea and their α-amylase inhibitory activity. Chemical and Pharmaceutical Bulletin. 55(9): 1325-1331.
[32] Santos‐Buelga, C., and Scalbert, A. 2000. Proanthocyanidins and tannin‐like compounds–nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture. 80(7): 1094-1117.
[33] Jiang, Z., Yu, G., Liang, Y., Song, T., Zhu, Y., Ni, H., Yamaguchi, K., Tatsuya Oda, T. 2019. Inhibitory effects of a sulfated polysaccharide isolated from edible red alga Bangia fusco-purpurea on α-amylase and α-glucosidase. Bioscience, Biotechnology, and Biochemistry. 83: 2065–2074.
[34] Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M., and Chou, C. J. 2008.Flavonoids for controlling starch digestion: Structural requirements for inhibiting human alpha-amylase. Journal of Medicinal Chemistry. 51: 3555–3561.
[35] Toeller, M. 1994. α‐Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects. European Journal of Clinical Investigation. 24(S3): 31-35.
[36] McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A., and Stewart, D. 2005. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry. 53(7): 2760-2766.
[37] Hua, M., Sun, Y., Shao, Z., Lu, J., Lu, Y., and Li, Z. 2020. Functional soluble dietary fiber from ginseng residue: Polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. Food Biochemistry. 44(12), e13524.