بررسی اثر روغن سیاه دانه در حالت آزاد و ریزپوشانی شده با آلژینات بر ویژگی‌های میکروبی و حسی گاناش شکلاتی

نویسندگان
1 دانشجوی دکتری تخصصی، گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
2 دانشیار گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
3 استادیار گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
4 دانشیار گروه علوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران.
چکیده
امروزه با ارتقاء سطح آگاهی­ و تغییر نگرش مردم، تقاضا برای مواد غذایی فراسودمند افزایش یافته است. ترکیبات مؤثره سیاه‏دانه با دارا بودن خواص آنتی‏اکسیدانی و ضدمیکروبی مورد توجه محققان زیادی است. این تحقیق با هدف بهره‏مندی از خواص عملگرایی روغن سیاه‏دانه در یک مدل غذایی انجام شد. در فاز اول عدد پراکسید، رنگ و ویژگی‏های ضدمیکروبی روغن سیاه‏دانه در حالت آزاد و ریزپوشانی‏شده با آلژینات بررسی شد. در فاز دوم ویژگی‏های میکروبی و حسی 4 نمونه گاناش شکلاتی (بدون نگهدارنده (G)، بدون نگهدارنده+میکروب‏های تلقیح شده (GM)، حاوی 3 درصد روغن سیاه‏دانه آزاد+میکروب‏های تلقیح شده (GOM) و حاوی 3 درصد روغن سیاهَ‏دانه ریزپوشانی‏شده+میکروب‏های تلقیح شده (GOM)) با یکدیگر مقایسه شدند. نتایج فاز اول نشان داد حداقل غلظت بازدارندگی (MIC) و ‏کشندگی (MBC) روغن سیاه‏دانه در حالت آزاد بر سالمونلا‏ تیفی‏موریوم، اشریشیاکلای، استافیلوکوکوس‏اورئوس، آسپرژیلوس‏نایجر و کاندیدا آلبیکانس بیشتر از حالت ریزپوشانی شده بود. همچنین بیشترین و کمترین اثر ضدمیکروبی روغن سیاه‏دانه به ترتیب بر روی کاندیدا آلبیکانس و اشریشیاکلی مشاهده شد. عدد پراکسید و رنگ روغن سیاه‏دانه در حالت آزاد بیش از حالت ریزپوشانی‏شده بود. نتایج فاز دوم نیز نشان داد حضور روغن سیاه‏دانه در فرمولاسیون گاناش شکلاتی سبب کاهش بار میکروبی نمونه‏های تولیدی شد. این در حالی بود که عملکرد ضدمیکروبی روغن سیاه‏دانه در حالت آزاد در کاهش بار میکروبی مدل غذایی بیشتر از حالت ریزپوشانی شده بود. در نهایت نتایج ارزیابی حسی نشان داد گاناش شکلاتی حاوی روغن سیاه‏دانه ریزپوشانی شده از ویژگی‏های حسی بهتری در مقایسه با نمونه حاوی روغن سیاه‏دانه در حالت آزاد برخوردار بودند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of free and alginate encapsulated black seed oil on microbial and sensory properties chocolate ganache

نویسندگان English

banafsheh mohimani 1
shilla safaeian 2
Rezvan Mousavi nadushan 2
Mohammad Rabani 3
Hamid Tavakolipour 4
1 Ph.D Student, Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Associate Professor, Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Associate Professor, Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
4 Associate Professor, Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran.
چکیده English

Today, with the rise of awareness and changing attitudes, the demand for healthy foods has increased. The effective compounds of black seed with its antioxidant and antimicrobial properties are of interest to many researchers. The aim of this study was to benefit from the functional properties of black seed oil in a food model. In the first phase, the peroxide index, color and antimicrobial properties of free and alginate encapsulated black seed oil were investigated. In the second phase, microbial and sensory properties of 4 chocolate ganache samples (preservative free (G or Control), preservative free + inoculated microorganisms (GM), containing 3% free black seed oil + inoculated microorganisms (GOM) And containing 3% of encapsulated black seed oil + inoculated microorganisms (GOM)) were compared. The results of the first phase showed that MIC and MBC of free black seed oil on Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Aspergillus niger and Candida albicans were higher than the encapsulated black seed oil. Also, the highest and lowest antimicrobial effects of black seed oil were observed on Candida albicans and Escherichia coli, respectively. The peroxide index and color of free black seed oil was more than encapsulated black seed oil . Also, the results of the second phase showed that the presence of black seed oil in the chocolate ganache formulation reduced the microbial load of the produced samples. However, the antimicrobial action of free black seed oil on the microbial load of the food model was more than encapsulated black seed oil. Finally, the results of sensory evaluation showed that chocolate ganache containing encapsulated black seed oil had better sensory properties compared to the sample containing free black seed oil.

کلیدواژه‌ها English

Food model
Functional
Black seed
Antimicrobial properties
Encapsulation
1. Czemplik, M., Zuk, M., Kulma, A., Kuc, S. and Szopa, J. G.M. (2011). flax as a source of effective antimicrobial compounds. Sci Microb Pathog Commun Curr Res Technol Adv. 2:1216–24.
2. Silva, V.M., Vieira, G.S. and Hubinger, M.D. (2014). Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Res Int. Jul 1;61:132–43.
3. Roller, S. (1995). The quest for natural antimicrobials as novel means of food preservation: Status report on a European research project. Int Biodeterior Biodegrad. 1;36(3):333–45.
4. Fisher, K. and Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci Technol. Mar 1;19(3):156–64.
5. Randhawa, M.A. and Al-Ghamdi, M.S. (2002). A review of the pharmaco-therapeutic effects of Nigella sativa. Pak J Med Res.41(2):77–83.
6. Lautenbacher, L.M.(1997). eine neue quelle ungesattigter fettsauren. Dtsch Apoth-Ztg. 137(50):68–9.
7. Pourashouri, P. Shabanpour, B. Razavi, S.H., Jafari, S.M., Shabani, A., and Aubourg, S. (2014). Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food Bioprocess Technology, 51(8), 348-355. (in Persian).
8. Truelstrup-Hansen, L. Allan-Wojtas, P.M. Jin, Y.L. and Paulson, A.T. (2002). Survival of free & Caalginate microencapsulated Bifi dobacterium spp. in simulated gastrointestinal conditions. Food Microbiology, 19(1), 35-45.
9. Eratte, D. Wang, B. Dowling, K. Barrow, C.J. and Adhikari, B.P. (2014). Complex coacervation with whey protein isolate & gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Function, 5(11), 2743- 2750.
10. Paoletti, R. Poli, A. Conti, A. and Visioli, F. (2012). Chocolate and Health. Springer-Verlag Italia.
11. Harrington, W. L. (2011). The Effects of Roasting Time and Temperature on the Antioxidant Capacity of Cocoa Beans from Dominican Republic, Ecuador, Haiti, Indonesia, and Ivory Coast. University of Tennessee, Knoxville, M.S. Trace: Tennessee Research and Creative.
12. Eyre, C. (2008). Functional chocolate creeps up on main steam, UPL.
13. Özcan, M. M., Al-Juhaimi, F. Y., Ahmed, I. A. M., Osman, M. A., and Gassem, M. A. (2019). Effect of soxhlet and cold press extractions on the physico-chemical characteristics of roasted and non-roasted chia seed oils. Journal of Food Measurement and Characterization, 13(1), 648–655.
14. Zhang, Z., Wang, L., Li, D., Jiao, S., Dong, X., & Mao, Z. (2008). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192–198.
15. AOCS. (1997). Official methods and recommended practices of the AOCS. American Oil Chemists’ Society.
16. AOAC. (2010). Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs/edited by William Horwitz. Gaithersburg (Maryland): AOAC International, 1997.
17. Homayouni, A. Ehsani, M.R. Azizi, A. Yarmand, M.S. and Razavi, S.H. (2007). Effect of Lecithin and Calcium Chloride Solution on the Microencapsulation Process Yield of Calcium Alginate Beads. IRAN POLYM J;16(9):597—606 (in Persian).
18. Yoshida, H. and Kajimoto, G. (1989). Effects of Microwave Energy on the Tocopherols of Soybean Seeds. Journal of food science, 54(6), 1596-1600.
19. Kim, Y.J. Kang, S. Kim, D.H. Kim, Y.J. Kim, W.R. and Kim, Y.M. (2017). Calorie reduction of chocolate ganache through substitution of whipped cream. J Ethn Foods. 1;4(1):51–7.
20. Wikler, M. and Matthew, A. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. CLSI (NCCLS). 26(2):9-16.
21. Cheikh-Rouhou, S., Besbes, S., Hentati, B., Blecker, C., Deroanne, C. and Attia, H. (2007). Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chemistry, 101(2), 673–681.
22. Nickavar B, Mojab F, Javidnia K, and Amoli MAR. (2003). Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Z Für Naturforschung C. 58(9–10):629–31.
23. Gharby, S., Harhar, H., Guillaume, D., and Roudani, A. (2015). Chemical investigation of Nigella sativa L. seed oil produced in Morocco. J. of the Saudi Society of Agricultural Sciences. 14: 172–177.
24. Kiralan, M., Özkan, G., Bayrak, A., and Ramadan, M.F. (2014). Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. J. Industrial Crops and Products. 57: 52- 58.
25. Lutterodt, H., Luther, M., Slavin, M., Yin, J.J., Parry, J., Gao, J.M., and Yu, L. (2010). Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils. LWT - Food Science and Technology. 43: 1409-1413
26. Da Porto, C., Decorti, D., and Tubaro, F. (2012). Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical
27. Farzaneh, V. and Carvalho, I.S. (2015). A review of the health benefit potentials of herbalplant infusions and their mechanism of actions. Industrial Crops and Products. 65: 247–258.
28. White, P.J. (1991). Methodsfor measuring changes in deep-fat frying oils. Food Technology, 45: 75-80.
29. Chranioti, C. Nikoloudaki, A. and Tzia, C. (2015). Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydrate polymers, 127: 252-263.
30. Shahidi, F. and Zhong, Y. (2005). Lipid oxidation: measurement methods. In F. Shahidi (Ed.), Bailey’s industrial oil and fat products.pp. 357–385.
31. Taghvaei, M. Jafari, S.M. Mahoonak, A.S. Nikoo, A.M. Rahmanian, N. Hajitabar, J. and Meshginfar, N. (2014). The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT-Food Science and Technology, 56: 124-130.
32. Mattazi, N., Farah, A., Fadil, M., Chraibi, M., & Benbrahim, K. F. (2015). Essential oils analysis and antibacterial activity of the leaves of Rosmarinus officinalis, Salvia officinalis and Mentha piperita cultivated in Agadir (Morocco). Int J Pharm Pharm Sci, 7(9), 73–79.
33. Ramadan, M. F. and Mörsel, J. (2004). Oxidative stability of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) crude seed oils upon stripping. European Journal of Lipid Science and Technology, 106(1), 35–43.
34. Kahsai, A.W. (2002). Isolation and characterization of active ingredients from Nigella sativa for antibacterial screening. MSc thesis. East Tennessee State University, USA.Arici M, Sagdic O. and Gecgel U. (2005). Antibacterial effect of Turkish black cumin (Nigella sativa L.) oils. Grasas Aceites. 56(4):259–62.
35. Rogozhin, E.A., Oshchepkova, Y.I., Odintsova, T.I., Khadeeva, N.V., Veshkurova, O.N. and Egorov, T.A. (2011). Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiol Biochem. 49(2): 131-137.
36. Taha, M., Abdelazeiz, A. and Saudi, W. (2010). Antifungal effect of thymol, thymoquinone and thymohydroquinone against yeasts, dermatophytes and non-dermatophyte molds isolated from skin and nails fungal infections. Egypt J Biochem Mol Biol. 23: 109-126.
37. Ahmad, Z., Laughlin, T. and Kady, I .(2015). Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth. PLOS One. 10(5): e0127802
38. .Kaveh, S., Mahoonak, A. S., Ghorbani, M., & Jafari, S. M. (2022). Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products, 182, 114908.
39. Mahgoub, S., Ramadan, M., and El-Zahar, K. (2013). Cold pressed Nigella sativa oil inhibits the growth of foodborne pathogens and improves the quality of domiati cheese. J FoodSafet. 33: 470-480.
40. Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7–8), 587–605.
41. Frascareli, E.C. Silva, V.M. Tonon, R.V. and Hubinger, M.D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food Bioprod Process. 90(3):413–24.
42. Gill, A. O., & Holley, R. A. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology, 108(1), 1–9.
43. Khalili, S. T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani-cherati, T., Abdollahi, A. and Tabatabaei, M. (2015). Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus fl avus. LWT - Food Science and Technology, 60(1), 502–508.
44. Shilling M, Matt L, Rubin E, Visitacion MP, Haller N. A. and Grey S. F. (2013). Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile. J Med Food. 16(12):1079–85.
45. Ostrowska-Ligęza, E., Marzec, A., Górska, A., Wirkowska-Wojdyła, M., Bryś, J., Rejch, A., and Czarkowska, K. (2019). A comparative study of thermal and textural properties of milk, white and dark chocolates. Thermochimica Acta, 671, 60–69.
46. Sangsuwan, J., Pongsapakworawat, T., Bangmo, P. and Sutthasupa, S. (2016). Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT, 74, 14–20.
47. Perdones, A., Sánchez-González, L., Chiralt, A. and Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32–41.