[1] Niju, S., Nishanthini, T., & Balajii, M. (2020). Alkaline hydrogen peroxide-pretreated sugarcane tops for bioethanol production—a process optimization study. Biomass Conversion and Biorefinery, 10(1), 149-165.
[2] Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresource technology, 102(14), 7119-7123.
[3] Millati, R., Wikandari, R., Ariyanto, T., Putri, R. U., & Taherzadeh, M. J. (2020). Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresource technology, 304, 122998.
[4] Yu, K. L., Chen, W. H., Sheen, H. K., Chang, J. S., Lin, C. S., Ong, H. C., ... & Ling, T. C. (2020). Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment. Renewable Energy, 156, 349-360.
[5] Sindhu, R., Binod, P., Mathew, A. K., Abraham, A., Gnansounou, E., Ummalyma, S. B., ... & Pandey, A. (2017). Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. Bioresource technology, 242, 146-151.
[6] Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low‐cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 2(1), 26-40.
[7] Goshadrou, A. (2021). A novel sequential ultrasound-rhamnolipid assisted [EMIM] OAc pretreatment for enhanced valorization of invasive Cogongrass to bioethanol. Fuel, 290, 119997.
[8] Ngan, N. V. C., Chan, F. M. S., Nam, T. S., Van Thao, H., Maguyon-Detras, M. C., Hung, D. V., & Van Hung, N. (2020). Anaerobic digestion of rice straw for biogas production. Sustainable Rice Straw Management, 65-92.
[9] Sindhu, R., Kuttiraja, M., Binod, P., Sukumaran, R. K., & Pandey, A. (2014). Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renewable Energy, 62, 362-368.
[10] Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource technology, 101(13), 4851-4861.
[11] Lin, S. P., Kuo, T. C., Wang, H. T., Ting, Y., Hsieh, C. W., Chen, Y. K., ... & Cheng, K. C. (2020). Enhanced bioethanol production using atmospheric cold plasma-assisted detoxification of sugarcane bagasse hydrolysate. Bioresource Technology, 123704.
[12] Gao, S., Liu, H., Sun, L., Liu, N., Wang, J., Huang, Y., ... & Wang, M. (2019). The effects of dielectric barrier discharge plasma on physicochemical and digestion properties of starch. International journal of biological macromolecules, 138, 819-830.
[13] Okyere, A. Y., Bertoft, E., & Annor, G. A. (2019). Modification of cereal and tuber waxy starches with radio frequency cold plasma and its effects on waxy starch properties. Carbohydrate polymers, 223, 115075.
[14] Ito, S., Sakai, K., Gamaleev, V., Ito, M., Hori, M., Kato, M., & Shimizu, M. (2020). Oxygen radical based on non-thermal atmospheric pressure plasma alleviates lignin-derived phenolic toxicity in yeast. Biotechnology for biofuels, 13(1), 1-13.
[15] Casabar, J. T., Ramaraj, R., Tipnee, S., & Unpaprom, Y. (2020). Enhancement of hydrolysis with Trichoderma harzianum for bioethanol production of sonicated pineapple fruit peel. Fuel, 279, 118437.
[16] Bach, Q. V., Chen, W. H., Lin, S. C., Sheen, H. K., & Chang, J. S. (2017). Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Conversion and Management, 141, 163-170.
[17] Nikolić, S., Mojović, L., Rakin, M., Pejin, D., & Pejin, J. (2011). Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Technologies and Environmental Policy, 13(4), 587-594.
[18] Abd-Rahim, F., Wasoh, H., Zakaria, M. R., Ariff, A., Kapri, R., Ramli, N., & Siew-Ling, L. (2014). Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocolloids, 42, 309-315.
[19] Teh, Y. Y., Lee, K. T., Chen, W. H., Lin, S. C., Sheen, H. K., & Tan, I. S. (2017). Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresource technology, 246, 20-27.
[20] Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., ... & Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148, 276-291.
[21] Gan, Y. Y., Ong, H. C., Show, P. L., Ling, T. C., Chen, W. H., Yu, K. L., & Abdullah, R. (2018). Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Conversion and Management, 165, 152-162.
[22] Yu, K. L., Show, P. L., Ong, H. C., Ling, T. C., Chen, W. H., & Salleh, M. A. M. (2018). Biochar production from microalgae cultivation through pyrolysis as a sustainable carbon sequestration and biorefinery approach. Clean Technologies and Environmental Policy, 20(9), 2047-2055.
[23] Zheng, H., Guo, W., Li, S., Chen, Y., Wu, Q., Feng, X., ... & Chang, J. S. (2017). Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism. Bioresource technology, 244, 1456-1464.
[24] Hassan, S. S., Ravindran, R., Jaiswal, S., Tiwari, B. K., Williams, G. A., & Jaiswal, A. K. (2020). An evaluation of sonication pretreatment for enhancing saccharification of brewers' spent grain. Waste Management, 105, 240-247.
[25] Silva-Fernandes, T., Santos, J. C., Hasmann, F., Rodrigues, R. C. L. B., Izario Filho, H. J., & Felipe, M. G. A. (2017). Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries. Bioresource technology, 243, 384-392.
[26] Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied microbiology and biotechnology, 66(1), 10-26.
[27] Liu, Y., Chen, J., Lu, X., Ji, X., & Wang, C. (2019). Reducing the agitation power consumption in anaerobic digestion of corn straw by adjusting the rheological properties. Energy Procedia, 158, 1267-1272.
[28] Qin, L., Li, W. C., Liu, L., Zhu, J. Q., Li, X., Li, B. Z., & Yuan, Y. J. (2016). Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for biofuels, 9(1), 1-10.
[29] Ravindran, R., Sarangapani, C., Jaiswal, S., Cullen, P. J., & Jaiswal, A. K. (2017). Ferric chloride assisted plasma pretreatment of lignocellulose. Bioresource technology, 243, 327-334.