[1] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Hamishehkar, H. (2019). Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polymer Testing, 77, 105868.
[2] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2020). Barhang (Plantago major L.) seed gum: Ultrasound-assisted extraction optimization, characterization and biological activities. Journal of Food Processing and Preservation. DOI: 10.1111/jfpp.14750.
[3] Jiang, Y., Koteswara Reddy, C., Huang, K., Chen, L., & Xu, B. (2019). Hydrocolloidal properties of flaxseed galactomannan / konjac glucomannan compound gel. International Journal of Biological Macromolecules, 133, 1156 – 1163.
[4] Bakhshy, E., Zarinkamar, F., & Nazari, M. (2019). Isolation, qualitative and quantitative evaluation of galactomannan during germination of Trigonella persica (Fabaceae) seed. International Journal of Biological Macromolecules, 137, 286 – 295.
[5] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2018). The effects of Plantago major seed gum on steady and dynamic oscillatory shear rheology of sunflower oil-in-water emulsions. Journal of Texture Studies, 49(5), 536 – 547.
[6] M. Busch, V., A. Kolender, A., R. Santagapita, P., & Buera, P. (2015). Vinal gum, a galactomannan from Prosopis ruscifolia seeds: Physicochemical characterization. Food Hydrocolloids, 51, 495 – 502.
[7] Niknam, R., Mousavi, M., & Kiani, H. (2020). New studies on galactomannan extracted from Trigonella foenum – graceum (fenugreek) seed: Effect of subsequent use of ultrasound and microwave on the physicochemical and rheological properties. Food and Bioprocess Technology, 13(5), 882 – 900.
[8] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Adun, P. (2019). Comprehensive study of intrinsic viscosity, steady and oscillatory shear rheology of Barhang seed hydrocolloid in aqueous dispersions. Journal of Food Process Engineering. DOI: 10.1111/jfpe.13047.
[9] Liyanage, S., Abidi, N., Auld, D., & Moussa, H. (2015). Chemical and physical characterization of galactomannan extracted from guar cultivars (Cyamopsis tetragonolobus L.). Industrial Crops and Products, 74, 388 – 396.
[10] Gupta, S.K., Kalaiselvan, V., Srivastava, S., Saxena, R., & Agrawal, S.S. (2010). Trigonella foenum – graecum (Fenugreek) protects against selenite – induced oxidative stress in experimental cataractogenesis. Biological Trace Element Research, 136 (3), 533 – 542.
[11] Shaheen, U., A. Ragab, E., N. Abdalla, A., & Bader, A. (2018). Triterpenoidal saponins from the fruits of Gleditsia caspica with proapoptotic properties. Phytochemistry, 145, 168 – 178.
[12] Gorgani, L., Mohammadi, M., D.Najafpour, G., & Nikzad, M. (2017). Sequential microwave-ultrasound-assisted extraction of piperine from black pepper (Piper nigrum L.). Food and Bioprocess Technology, 10, 2199 – 2207.
[13] Dong, Z., Gu, F., Xu, F., & Wang, Q. (2014). Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews. Food Chemistry, 149, 54 – 61.
[14] Lu, X., Zheng, Z., Li, H., Cao, R., Zheng, Y., Yu, H., Xiao, J., Miao, S., & Zheng, B. (2017). Optimization of ultrasonic – microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Industrial Crops and Products, 107, 546 – 557.
[15] Kumar, C., Sivakumar, M., & Ruckmani, K. (2016). Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities. International Journal of Biological Macromolecules, 92, 682 – 693.
[16] Sun, M., Sun, Y., Li, Y., Liu, Y., Liang, J., & Zhang, Z. (2018). Physical properties and antidiabetic potential of a novel galactomannan from seeds of Gleditsia japonica var. delavayi. Journal of Functional Foods, 46, 546 – 555.
[17] Homayoonfal, M., Mousavi, S.M., Kiani, H., Askari, GH., Khani, M., Rezazad, M., & Alizadeh, M. (2018). The use of an innovative inverse numerical modeling method for the evaluation and parameter estimation of barberry anthocyanins ultrasound assisted extraction. Chemical Engineering & Processing: Process Intensification, 133, 1 – 11.
[18] Kiani, H., & Sun, D.W. (2016). Numerical modeling of particle to fluid heat transfer during ultrasound assisted immersion cooling. Chemical Engineering & Processing: Process Intensification, 99, 25 – 32.
[19] Fabbri, A., Cevoli, C., & Troncoso, R. (2014). Moisture diffusivity coefficient estimation in solid food by inversion of a numerical model. Food Research International, 56, 63 – 67.
[20] Currenti, G., Negro, C., & Nunnari, G. (2005). Inverse modeling of volcanomagnetic fields using a genetic algorithm technique. Geophysical Journal International, 163, 403 -418.
[21] Anderson, B., & Singh, P. (2006). Effective heat transfer coefficient measurement during air impingement thawing using an inverse method. International Journal of Refrigeration, 29(2), 281 – 293.
[22] Fabbri, A., & Cevoli, C. (2016). Rheological z finite elements model inversion. Journal of Food Engineering, 169, 172 – 178.
[23] Niknam, R., Mousavi, M., & Kiani, H. (2021). intrinsic viscosity, steady and oscillatory shear rheology of a new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds in aqueous dispersions. European Food Research and Technology, 247 (10), 2579 – 2590.
[24] Kiani, H., Hojjatoleslamy, M., & Mousavi, M. (2016). Data reduction of a numerically simulated sugar extraction process in counter-current flow horizontal extraction. Journal of Agricultural Science and Technology, 18(3), 615 – 627.
[25] Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer. International Journal of Thermal Sciences, 136, 539 – 548.
[26] Cisse, M., Vaillant, F., Acosta, O., Mayer, C., & Dornier, M. (2009). Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the Arrhenius, eyring, and ball models. Journal of Agricultural and Food Chemistry, 57, 6285 – 6291.
[27] Niknam, R., Mousavi, M., & Kiani, H. (2021). A new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds: Extraction and comprehensive characterization. Journal of Food Processing and Preservation, e15774.
[28] Chen, C., Zhang, B., Huang, Q., Fu, X., & Liu, R. (2017). Microwave-assisted extraction of polysaccharides from Moringa Oleifera Lam. leaves: Characterization and hypoglycemic activity. Industrial Crops and Products, 100, 1 – 11.
[29] Amiryousefi, M., Mohebbi, M., & Khodaiyan, F. (2012). Kinetics of mass transfer in microwave precooked and deep-fat fried ostrich meat plates. Food and Bioprocess Technology, 5, 939 – 946.
[30] Gujar, J., Wagh, S., & Gaikar, V. (2010). Experimental and modeling studies on microwave-assisted extraction of thymol from seeds of Trachyspermum ammi (TA). Separation and Purification Technology, 70, 257 – 264.
[31] Chumnanpaisont, N., Niamnuy, C., & Devahastin, S. (2014). Mathematical model for continuous and intermittent microwave-assisted extraction of bioactive compound from plant material: Extraction of β carotene from carrot peels. Chemical Engineering Science, 116, 442 – 451.
[32] Xu, Z., Wu, J., Zhang, Y., Hu, X., Liao, X., & Wang, Z. (2010). Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology, 101 (18), 7151 – 7157.
[33] Abrahamsson, V., Andersson, N., Nilsson, B., & Turner, C. (2016). Method development in inverse modeling applied to supercritical fluid extraction of lipids. The Journal of Supercritical Fluids, 111, 14 – 27.
[34] Kiani, H., Karimi, F., Labbafi, M., & Fathi, M. (2018). A novel inverse numerical modeling method for the estimation of water and salt mass transfer coefficients during ultrasonic assisted-osmotic dehydration of cucumber cubes. Ultrasonic Sonochemistry, 44, 171 – 176.
[35] Tao, Y., Zhang, Z., & Sun, D. (2014). Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine. Ultrasonics Sonochemistry, 21, 1839 – 1848.
[36] Pettinato, M., Casazza, A., Ferrari, P., Palombo, D., & Perego, P. (2019). Eco-sustainable recovery of antioxidants from spent coffee grounds by microwave-assisted extraction: Process optimization, kinetic modeling and biological validation. Food and Bioproducts processing, 114, 31 – 42.
[37] Ren, B., Chen, C., Li, C., Fu, X., You, L., & Liu, R. (2017). Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydrate Polymers, 173, 192 – 201.
[38] Carrera, C., Ruiz-Rodriguez, A., Palma, M., & Barroso, C.G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica Chimica Acta, 732, 100 – 104.
[39] Vega, A., Corona, N., Palou, E., & Malo, A. (2016). Estimation of mass transfer coefficients of the extraction process of essential oil from orange peel using microwave assisted extraction. Journal of Food Engineering, 170, 136 – 143.
[40] Yang, Y., Lei, Z., Zhao, M., Wu, C., Wang, L., & Xu, Y. (2020). Microwave-assisted extraction of an acidic polysaccharide from Ribes nigrum L.: Structural characteristics and biological activities. Industrial Crops and Products, 147, 112249.
[41] Tsubaki, S., Oono, K., Hiraoka, M., Onda, A., & Mitani, T. (2016). Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chemistry, 210, 311 – 316.
[42] Tramontin, D., Alves, A., Bolzan, A., & Quadri, M. (2021). Mathematical modeling and numerical simulation of the extraction of bioactive compounds from Artocarpus heterophyllus with supercritical CO2. The Journal of Supercritical Fluids, 177, 105353.
[43] Maran, J., Swathi, K., Jeevitha, P., Jayalakshmi, J., & Ashvini, G. (2015). Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydrate Polymers, 123, 67 – 71.
[44] Lee, C., Binner, E., Smith, C., John, R., Gomes, R., & Robinson, J. (2016). Enhancing natural product extraction and mass transfer using selective microwave heating. Chemical Engineering Science, 149, 97 – 103.
[45] Alara, O., & Abdurahman, N. (2019). Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: Kinetic modelling and process intensification. Industrial Crops and Products, 137, 528 – 535.