استفاده از روش عددی معکوس در مدل سازی فرآیند استخراج با پیش تیمار مایکروویو گالاکتومانان‌های حاصل از دانه شنبلیله (Trigonella foenum – graceum) و دانه لیلکی ایرانی (Gleditsia caspica): محاسبه ضرایب انتقال جرم

نویسندگان
گروه علوم و مهندسی صنایع غذایی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، ایران
چکیده
به دلیل افزایش روز افزون استفاده از بیوپلیمر­ها در فرمولاسیون محصولات غذایی، معرفی منابع جدید هیدروکلوئیدی از اهمیت ویژه­ای برخوردار گشته است. پژوهش­های متعددی بر روی استخراج آبی و یا روش­های نوین استخراج همچون استخراج با پیش­تیمار مایکروویو انجام گرفته است اما در بیشتر موارد، بخش مهندسی این فرآیند­ها مغفول مانده است. در این پژوهش، هدف اصلی، بررسی انتقال جرم در فرآیند استخراج با پیش­تیمار مایکروویو گالاکتومانان از دو دانه گیاهی با استفاده از روش جدید به نام روش عددی معکوس بود. برای نیل به این هدف، غلظت گالاکتومانان استخراج شده از هر دو دانه گیاهی در مقابل زمان به دست آمد و داده­های آزمایشگاهی و داده­های پیش­بینی شده توسط مدل با هم مقایسه گردید که همخوانی قابل قبولی بین آن­ها وجود داشت. پارامتر­های مؤثر در انتقال جرم شامل ضریب پخش (E)، ضریب انتشار (D) و ضریب انتقال جرم کلی (kc) برای نمونه­های مختلف به ترتیب در دامنه m2/s10-12×1/63 1/12، m2/s10-8×3/28 2/30 و m2/s10-7×2/25 1/54 برای گالاکتومانان شنبلیله و m2/s10-12× 1/76 1/27، m2/s10-8×3/52 2/55 و m2/s10-7×2/30 1/70 برای گالاکتومانان لیلکی ایرانی بود. تفاوت بین مقادیر به دست آمده برای دو گالاکتومانان می­تواند به نوع دانه، سختی و نرمی دیواره و ویژگی­های ترکیب هدف مرتبط باشد. با توجه به نتایج به دست آمده، روش عددی معکوس به عنوان روش قابل قبول و مؤثر جهت مدل سازی فرآیند استخراج هر دو گالاکتومانان معرفی گردید.



کلیدواژه‌ها

موضوعات


عنوان مقاله English

Using inverse numerical method in modeling of microwave-assisted extraction of galactomannans obtained from Trigonella foenum - graceum and Gleditsia caspica seeds: Measurement of mass transfer coefficients

نویسندگان English

Rasoul Niknam
Mohammad Mousavi
Hossein Kiani
Department of Food Science and Technology, Campus of Agriculture and Natural Resources, University of Tehran, Iran
چکیده English

Due to the increasing use of biopolymers in food formulations, introducing new hydrocolloid sources has become particularly important. Numerous researches have been done on aqueous extraction or new extraction methods such as extraction with microwave pretreatment, but in most cases, the engineering part of these processes has been neglected. In this study, the main purpose was to investigate the mass transfer in the process of microwave-assisted extraction of galactomannan from two plant seeds using a new method known as inverse numerical method. To achieve this goal, the concentration of galactomannan extracted from both plant seeds was obtained against time and the experimental data and the data predicted by the software (based on the simulation) were compared which indicated proper convergence between these data. Effective parameters in mass transfer including dispersion coefficient (E), diffusion coefficient (D) and total mass transfer coefficient (kc) were in the range of 1.12 – 1.63×10-12, 2.30 – 3.28×10-8 and 1.54 – 2.25×10-7 m2/s for fenugreek galactomannan and 1.27 – 1.76×10-12, 2.55 – 3.52×10-8 and 1.85 – 2.30×10-7m2/s for Gleditsia caspica galactomannan. The difference between the values obtained for the two galactomannans could be attributed to the seed type, hardness or softness of the seed wall and characteristics of the target component. According to the obtained results, inverse numerical method could be introduced as an acceptable and effective method for modeling of the extraction process of both galactomannans.

کلیدواژه‌ها English

Inverse numerical method
Modeling
Microwave
Galactomannan
Gleditsia caspica
[1] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Hamishehkar, H. (2019). Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polymer Testing, 77, 105868.
[2] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2020). Barhang (Plantago major L.) seed gum: Ultrasound-assisted extraction optimization, characterization and biological activities. Journal of Food Processing and Preservation. DOI: 10.1111/jfpp.14750.
[3] Jiang, Y., Koteswara Reddy, C., Huang, K., Chen, L., & Xu, B. (2019). Hydrocolloidal properties of flaxseed galactomannan / konjac glucomannan compound gel. International Journal of Biological Macromolecules, 133, 1156 – 1163.
[4] Bakhshy, E., Zarinkamar, F., & Nazari, M. (2019). Isolation, qualitative and quantitative evaluation of galactomannan during germination of Trigonella persica (Fabaceae) seed. International Journal of Biological Macromolecules, 137, 286 – 295.
[5] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2018). The effects of Plantago major seed gum on steady and dynamic oscillatory shear rheology of sunflower oil-in-water emulsions. Journal of Texture Studies, 49(5), 536 – 547.
[6] M. Busch, V., A. Kolender, A., R. Santagapita, P., & Buera, P. (2015). Vinal gum, a galactomannan from Prosopis ruscifolia seeds: Physicochemical characterization. Food Hydrocolloids, 51, 495 – 502.
[7] Niknam, R., Mousavi, M., & Kiani, H. (2020). New studies on galactomannan extracted from Trigonella foenum – graceum (fenugreek) seed: Effect of subsequent use of ultrasound and microwave on the physicochemical and rheological properties. Food and Bioprocess Technology, 13(5), 882 – 900.
[8] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Adun, P. (2019). Comprehensive study of intrinsic viscosity, steady and oscillatory shear rheology of Barhang seed hydrocolloid in aqueous dispersions. Journal of Food Process Engineering. DOI: 10.1111/jfpe.13047.
[9] Liyanage, S., Abidi, N., Auld, D., & Moussa, H. (2015). Chemical and physical characterization of galactomannan extracted from guar cultivars (Cyamopsis tetragonolobus L.). Industrial Crops and Products, 74, 388 – 396.
[10] Gupta, S.K., Kalaiselvan, V., Srivastava, S., Saxena, R., & Agrawal, S.S. (2010). Trigonella foenum – graecum (Fenugreek) protects against selenite – induced oxidative stress in experimental cataractogenesis. Biological Trace Element Research, 136 (3), 533 – 542.

[11] Shaheen, U., A. Ragab, E., N. Abdalla, A., & Bader, A. (2018). Triterpenoidal saponins from the fruits of Gleditsia caspica with proapoptotic properties. Phytochemistry, 145, 168 – 178.
[12] Gorgani, L., Mohammadi, M., D.Najafpour, G., & Nikzad, M. (2017). Sequential microwave-ultrasound-assisted extraction of piperine from black pepper (Piper nigrum L.). Food and Bioprocess Technology, 10, 2199 – 2207.
[13] Dong, Z., Gu, F., Xu, F., & Wang, Q. (2014). Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews. Food Chemistry, 149, 54 – 61.
[14] Lu, X., Zheng, Z., Li, H., Cao, R., Zheng, Y., Yu, H., Xiao, J., Miao, S., & Zheng, B. (2017). Optimization of ultrasonic – microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Industrial Crops and Products, 107, 546 – 557.
[15] Kumar, C., Sivakumar, M., & Ruckmani, K. (2016). Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities. International Journal of Biological Macromolecules, 92, 682 – 693.
[16] Sun, M., Sun, Y., Li, Y., Liu, Y., Liang, J., & Zhang, Z. (2018). Physical properties and antidiabetic potential of a novel galactomannan from seeds of Gleditsia japonica var. delavayi. Journal of Functional Foods, 46, 546 – 555.

[17] Homayoonfal, M., Mousavi, S.M., Kiani, H., Askari, GH., Khani, M., Rezazad, M., & Alizadeh, M. (2018). The use of an innovative inverse numerical modeling method for the evaluation and parameter estimation of barberry anthocyanins ultrasound assisted extraction. Chemical Engineering & Processing: Process Intensification, 133, 1 – 11.
[18] Kiani, H., & Sun, D.W. (2016). Numerical modeling of particle to fluid heat transfer during ultrasound assisted immersion cooling. Chemical Engineering & Processing: Process Intensification, 99, 25 – 32.
[19] Fabbri, A., Cevoli, C., & Troncoso, R. (2014). Moisture diffusivity coefficient estimation in solid food by inversion of a numerical model. Food Research International, 56, 63 – 67.
[20] Currenti, G., Negro, C., & Nunnari, G. (2005). Inverse modeling of volcanomagnetic fields using a genetic algorithm technique. Geophysical Journal International, 163, 403 -418.
[21] Anderson, B., & Singh, P. (2006). Effective heat transfer coefficient measurement during air impingement thawing using an inverse method. International Journal of Refrigeration, 29(2), 281 – 293.
[22] Fabbri, A., & Cevoli, C. (2016). Rheological z finite elements model inversion. Journal of Food Engineering, 169, 172 – 178.
[23] Niknam, R., Mousavi, M., & Kiani, H. (2021). intrinsic viscosity, steady and oscillatory shear rheology of a new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds in aqueous dispersions. European Food Research and Technology, 247 (10), 2579 – 2590.
[24] Kiani, H., Hojjatoleslamy, M., & Mousavi, M. (2016). Data reduction of a numerically simulated sugar extraction process in counter-current flow horizontal extraction. Journal of Agricultural Science and Technology, 18(3), 615 – 627.
[25] Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer. International Journal of Thermal Sciences, 136, 539 – 548.
[26] Cisse, M., Vaillant, F., Acosta, O., Mayer, C., & Dornier, M. (2009). Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the Arrhenius, eyring, and ball models. Journal of Agricultural and Food Chemistry, 57, 6285 – 6291.
[27] Niknam, R., Mousavi, M., & Kiani, H. (2021). A new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds: Extraction and comprehensive characterization. Journal of Food Processing and Preservation, e15774.
[28] Chen, C., Zhang, B., Huang, Q., Fu, X., & Liu, R. (2017). Microwave-assisted extraction of polysaccharides from Moringa Oleifera Lam. leaves: Characterization and hypoglycemic activity. Industrial Crops and Products, 100, 1 – 11.
[29] Amiryousefi, M., Mohebbi, M., & Khodaiyan, F. (2012). Kinetics of mass transfer in microwave precooked and deep-fat fried ostrich meat plates. Food and Bioprocess Technology, 5, 939 – 946.
[30] Gujar, J., Wagh, S., & Gaikar, V. (2010). Experimental and modeling studies on microwave-assisted extraction of thymol from seeds of Trachyspermum ammi (TA). Separation and Purification Technology, 70, 257 – 264.
[31] Chumnanpaisont, N., Niamnuy, C., & Devahastin, S. (2014). Mathematical model for continuous and intermittent microwave-assisted extraction of bioactive compound from plant material: Extraction of β carotene from carrot peels. Chemical Engineering Science, 116, 442 – 451.
[32] Xu, Z., Wu, J., Zhang, Y., Hu, X., Liao, X., & Wang, Z. (2010). Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology, 101 (18), 7151 – 7157.
[33] Abrahamsson, V., Andersson, N., Nilsson, B., & Turner, C. (2016). Method development in inverse modeling applied to supercritical fluid extraction of lipids. The Journal of Supercritical Fluids, 111, 14 – 27.
[34] Kiani, H., Karimi, F., Labbafi, M., & Fathi, M. (2018). A novel inverse numerical modeling method for the estimation of water and salt mass transfer coefficients during ultrasonic assisted-osmotic dehydration of cucumber cubes. Ultrasonic Sonochemistry, 44, 171 – 176.
[35] Tao, Y., Zhang, Z., & Sun, D. (2014). Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine. Ultrasonics Sonochemistry, 21, 1839 – 1848.
[36] Pettinato, M., Casazza, A., Ferrari, P., Palombo, D., & Perego, P. (2019). Eco-sustainable recovery of antioxidants from spent coffee grounds by microwave-assisted extraction: Process optimization, kinetic modeling and biological validation. Food and Bioproducts processing, 114, 31 – 42.
[37] Ren, B., Chen, C., Li, C., Fu, X., You, L., & Liu, R. (2017). Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydrate Polymers, 173, 192 – 201.
[38] Carrera, C., Ruiz-Rodriguez, A., Palma, M., & Barroso, C.G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica Chimica Acta, 732, 100 – 104.
[39] Vega, A., Corona, N., Palou, E., & Malo, A. (2016). Estimation of mass transfer coefficients of the extraction process of essential oil from orange peel using microwave assisted extraction. Journal of Food Engineering, 170, 136 – 143.
[40] Yang, Y., Lei, Z., Zhao, M., Wu, C., Wang, L., & Xu, Y. (2020). Microwave-assisted extraction of an acidic polysaccharide from Ribes nigrum L.: Structural characteristics and biological activities. Industrial Crops and Products, 147, 112249.
[41] Tsubaki, S., Oono, K., Hiraoka, M., Onda, A., & Mitani, T. (2016). Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chemistry, 210, 311 – 316.

[42] Tramontin, D., Alves, A., Bolzan, A., & Quadri, M. (2021). Mathematical modeling and numerical simulation of the extraction of bioactive compounds from Artocarpus heterophyllus with supercritical CO2. The Journal of Supercritical Fluids, 177, 105353.
[43] Maran, J., Swathi, K., Jeevitha, P., Jayalakshmi, J., & Ashvini, G. (2015). Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydrate Polymers, 123, 67 – 71.
[44] Lee, C., Binner, E., Smith, C., John, R., Gomes, R., & Robinson, J. (2016). Enhancing natural product extraction and mass transfer using selective microwave heating. Chemical Engineering Science, 149, 97 – 103.
[45] Alara, O., & Abdurahman, N. (2019). Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: Kinetic modelling and process intensification. Industrial Crops and Products, 137, 528 – 535.