بررسی سیستماتیک نانوامولسیون های حاوی β-کاروتن تولید شده با استفاده از موسیلاژ دانه به

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 دانشیار گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 استادیار پژوهشکده نانوفناوری و مواد پیشرفته، دانشگاه صنعتی اصفهان، اصفهان، ایران
چکیده
β-کاروتن، به عنوان شناخته­ شده ترین عضو گروه کاروتنوئیدهای زیست­ فعال و یکی از اصلی ­ترین پیش­سازهای ویتامین A، در بهبود و پیشگیری از بسیاری از بیماری­ها مانند سرطان، دیابت نوع 2 و بیماری­های قلبی- عروقی نقش موثری را ایفا می­کند. یکی از روش­های مفید و موثر جهت تلفیق این جزء ارزشمند به فرمولاسیون­های غذایی و همچنین حفظ فعالیت ضداکسایشی و افزایش پایداری فیزیکوشیمیایی آن، نانو ریزپوشانی است. در این پژوهش، از موسیلاژ دانه به، بعنوان فاز آبی نانوامولسیون­های حامل β-کاروتن استفاده گردید. جهت دستیابی به درک عمیق ­تر تأثیر غلظت­ های مختلف β-کاروتن بر فرآیند نانو ریزپوشانی، پایداری فیزیکوشیمیایی امولسیون­های تولید شده تحت آزمون­های توزیع اندازه ذرات، اندازه­ گیری پتانسیل زتا، هدایت­سنجی، ارزیابی خواص رئولوژیک پایا، کشش سطحی و فعالیت ضداکسایشی مورد بحث و ارزیابی قرار گرفت. نتایج حاکی از آن بود که با افزایش غلظت کاروتنوئید در سیستم، ویسکوزیته، اندازه ذرات، فعالیت ضداکسایشی و پتانسیل زتا بطور قابل توجهی افزایش یافت؛ درحالیکه بررسی­ های هدایت­ سنجی روند نزولی هدایت الکریکی را نشان دادند. بطور کلی، نتایج این پژوهش نشان داد که بیوپلیمر آنیونی موسیلاژ دانه به از پتانسیل قابل توجهی در حفظ و بهبود ویژگی­های فیزیکوشیمیایی β-کاروتن برخوردار است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

A systematic investigation of β-carotene-loaded quince seed mucilage nanoemulsions

نویسندگان English

Hadis Rostamabadi 1
Alireza Sadeghi Mahoonak 2
Mohammad Ghorbani 2
Alireza Allafchian 3
1 Faculty of Food Science and Technology, Gorgan University of agriculture and natural resources, Gorgan, Iran.
2 Associate professor, Faculty of Food Science and Technology, Gorgan University of agriculture and natural resources, Gorgan, Iran
3 Assistant professor, Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan, Iran.
چکیده English

β-carotene, the most popular member of carotenoids with pro-vitamin A function, plays an important role in prevention of different disorders such as cancer, type 2 diabetes, and cardio-vascular diseases. Nanoencapsulation is one of the most effectual techniques for the incorporation of β-carotene into the food formulations in order to improve its antioxidant activity and physicochemical stability. In this study, quince seed mucilage was used as the aqueous phase of carotenoid emulsions. In order to attain a deep understanding of β-carotene loaded nanoemulsions, the impact of different β-carotene concentrations on physicochemical characteristics of produced emulsions (i. e. zeta potential, particle size, electrical conductivity, dynamic rheological properties, surface tension, and antioxidant activity) were investigated. The results revealed that increasing the β-carotene concentration would result in an increase in viscosity, droplet size, antioxidant activity, and zeta potential of produced nanoemulsions. While a reverse trend was observed in the case of electrical conductivity. Generally, the results indicated that the anionic quince seed mucilage effectively improved the β-carotene physicochemical stability.

کلیدواژه‌ها English

β-carotene
Quince Seed mucilage
Nanoemulsion
Physicochemical stability
Antioxidant activity
Qian C, Decker EA, Xiao H, McClements DJ. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry 2012;132:1221–9.
[2] Boon CS, McClements DJ, Weiss J, Decker EA. Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition 2010;50:515–32.
[3] Liu G, Zhou Y, Chen L. Intestinal uptake of barley protein-based nanoparticles for β-carotene delivery. Acta pharmaceutica sinica B 2019;9:87-96.
[4] Chen H, Zhong Q. Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend. Food Chemistry 2015;174:630–6.
[5] Gul K, Tak A, Singh AK, Singh P, Yousuf B, Wani AA. Chemistry, encapsulation, and health benefits of β-carotene-A review. Cogent Food and Agriculture 2015;1:1018696.
[6] Palozza P, Muzzalupo R, Trombino S, Valdannini A, Picci N. Solubilization and stabilization of β-carotene in niosomes: delivery to cultured cells. Chemistry and Physics of Lipids 2006;139:32–42.
[7] de Paz E, Martín Á, Bartolomé A, Largo M, Cocero MJ. Development of water-soluble β-carotene formulations by high-temperature, high-pressure emulsification and antisolvent precipitation. Food Hydrocolloids 2014;37:14–24.
[8] De Paz E, Martín Á, Estrella A, Rodríguez-Rojo S, Matias AA, Duarte CM, et al. Formulation of β-carotene by precipitation from pressurized ethyl acetate-on-water emulsions for application as natural colorant. Food Hydrocolloids 2012;26:17–27.
[9] Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules 2016;87:101–13.
[10] Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology 2013;6:628–47.
[11] Rezaeinia H, Ghorani B, Emadzadeh B, Tucker N. Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. Food Hydrocolloids 2019.
[12] Jouki M, Mortazavi SA, Yazdi FT, Koocheki A. Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers 2014;99:537–46.
[13] Ashraf MU, Hussain MA, Bashir S, Haseeb MT, Hussain Z. Quince seed hydrogel (glucuronoxylan): Evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. Journal of Drug Delivery Science and Technology 2018;45:455–65.
[14] Abbastabar B, Azizi MH, Adnani A, Abbasi S. Determining and modeling rheological characteristics of quince seed gum. Food Hydrocolloids 2015;43:259–64.
[15] BEMILLER JN, WHISTLER RL, BARKALOW DG, CHEN C-C. Aloe, chia, flaxseed, okra, psyllium seed, quince seed, and tamarind gums. Industrial Gums (Third Edition), Elsevier; 1993, p. 227–56.
[16] Wang L, Liu H-M, Xie A-J, Wang X-D, Zhu C-Y, Qin G-Y. Chinese quince (Chaenomeles sinensis) seed gum: Structural characterization. Food Hydrocolloids 2018;75:237–45.
[17] Nagarajan R, Drew C, Mello CM. Polymer− micelle complex as an aid to electrospinning nanofibers from aqueous solutions. The Journal of Physical Chemistry C 2007;111:16105–8.
[18] Stijnman AC, Bodnar I, Tromp RH. Electrospinning of food-grade polysaccharides. Food Hydrocolloids 2011;25:1393–8.
[19] Lacatusu I, Mitrea E, Badea N, Stan R, Oprea O, Meghea A. Lipid nanoparticles based on omega-3 fatty acids as effective carriers for lutein delivery. Preparation and in vitro characterization studies. Journal of Functional Foods 2013;5:1260–9.
[20] Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005;46:4799–810.
[21] Herricks TE, Kim S-H, Kim J, Li D, Kwak JH, Grate JW, et al. Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. Journal of Materials Chemistry 2005;15:3241–5.
[22] Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y. Electrospinning of nanofibers for tissue engineering applications. Journal of Nanomaterials 2013;2013:3.
[23] Kurd F, Fathi M, Shekarchizadeh H. Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. International Journal of Biological Macromolecules 2017;95:689–95.
[24] Deng L, Kang X, Liu Y, Feng F, Zhang H. Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chemistry 2017;231:70–7.
[25] Lević S, Lijaković IP, Đorđević V, Rac V, Rakić V, Knudsen TŠ, et al. Characterization of sodium alginate/d-limonene emulsions and respective calcium alginate/d-limonene beads produced by electrostatic extrusion. Food Hydrocolloids 2015;45:111–23.
[26] Jafari SM, Beheshti P, Assadpoor E. Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum. Journal of Food Engineering 2012;109:1–8.
[27] Li Y, Xiao H, McClements DJ. Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: Factors affecting polymethoxyflavone solubility. Food Biophysics 2012;7:341–53.
[28] Affandi MMM, Julianto T, Majeed A. Development and stability evaluation of astaxanthin nanoemulsion. Asian Journal of Pharmaceutical and Clinical Research 2011;4:142–8.
[29] An Y, Yan X, Li B, Li Y. Microencapsulation of capsanthin by self-emulsifying nanoemulsions and stability evaluation. European Food Research and Technology 2014;239:1077–85.
[30] Chan E-S. Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydrate Polymers 2011;84:1267–75.
[31] Jafari SM, McClements DJ. Nanoemulsions: Formulation, Applications, and Characterization. Academic Press; 2018.
[32] Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J. Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid and Interface Science 2008;13:245–51.
[33] Rostamabadi H, Falsafi SR, Jafari SM. Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release 2019.
[34] Aceituno-Medina M, Lopez-Rubio A, Mendoza S, Lagaron JM. Development of novel ultrathin structures based in amaranth (Amaranthus hypochondriacus) protein isolate through electrospinning. Food Hydrocolloids 2013;31:289–98.
[35] Wongsasulak S, Pathumban S, Yoovidhya T. Effect of entrapped α-tocopherol on mucoadhesivity and evaluation of the release, degradation, and swelling characteristics of zein–chitosan composite electrospun fibers. Journal of Food Engineering 2014;120:110–7.
[36] Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya T. Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. Journal of Food Engineering 2010;98:370–6.
[37] Kim H-W, Lee H-H, Knowles JC. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly (lactic acid) for bone regeneration. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2006;79:643–9.
[38] Muller FL, Pain JP, Villon P. On the behavior of non-Newtonian liquids in collinear ohmic heaters. Institution of Chemical Engineers Symposium Series, vol. 135, Hemsphere Publishing Corporation; 1994, p. 285–285.
[39] Khoshakhlagh K, Koocheki A, Mohebbi M, Allafchian A. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. Journal of Colloid and Interface Science 2017;490:562–75.
[40] Xia S, Tan C, Zhang Y, Abbas S, Feng B, Zhang X, et al. Modulating effect of lipid bilayer–carotenoid interactions on the property of liposome encapsulation. Colloids and Surfaces B: Biointerfaces 2015;128:172–80.