[1] H. Zhang, Z. Ma, X. Luo, X. Li, Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review, Antioxidants, 7 (2018) 69.
[2] Z. Ma, J. Ahmad, H. Zhang, I. Khan, S. Muhammad, Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food, South African Journal of Botany(2019).
[3] W.H. Organization, Regulatory situation of herbal medicines: a worldwide review, in, Geneva: World Health Organization, 1998.
[4] F. Alhakmani, S. Kumar, S.A. Khan, Estimation of total phenolic content, in–vitro antioxidant and anti–inflammatory activity of flowers of Moringa oleifera, Asian Pacific journal of tropical biomedicine, 3 (2013) 623-627.
[5] U. Kleeberg, J.-T. Tews, T. Ruprecht, M. Höing, A. Kuhlmann, C. Runge, Patient satisfaction and quality of life in cancer outpatients: results of the PASQOC* study, Supportive care in cancer, 13 (2005) 303-310.
[6] A. Ferreira, C. Proença, M. Serralheiro, M. Araujo, The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal, Journal of ethnopharmacology, 108 (2006) 31-37.
[7] V. Jaitak, K. Sharma, K. Kalia, N. Kumar, H. Singh, V. Kaul, B. Singh, Antioxidant activity of Potentilla fulgens: An alpine plant of western Himalaya, Journal of Food Composition and Analysis, 23 (2010) 142-147.
[8] M.C. Palada, Moringa (Moringa oleifera Lam.): A versatile tree crop with horticultural potential in the subtropical United States, HortScience, 31 .794-797 (1996)
[9] W. Nouman, S.M.A. Basra, M.T. Siddiqui, A. Yasmeen, T. Gull, M.A.C. Alcayde, Potential of Moringa oleifera L. as livestock fodder crop: a review, Turkish Journal of Agriculture and Forestry, 38 (2014) 1-14.
[10] A. Meena, S. Ayushy, K. Ramanjeet, P. Bhavana, S. Brijendra, Moringa oleifera: a review, Journal of Pharmacy Research, 3 (2010) 840-842.
[11] J.F. Morton, The horseradish tree, Moringa pterygosperma (Moringaceae)—a boon to arid lands?, Economic botany, 45 (1991) 318-333.
[12] M. Palada, L.-C. Chang, Suggested cultural practices for Moringa, International Cooperators’ Guide AVRDC. AVRDC pub, (2003) 03-545.
[13] C. Rodríguez-Pérez, R. Quirantes-Piné, A. Fernández-Gutiérrez, A. Segura-Carretero, Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves, Industrial Crops and Products, 66 (2015) 246-254.
[14] T.L.C. Oldoni, N. Merlin, M. Karling, S.T. Carpes, S.M. de Alencar, R.G.F. Morales, E.A. da Silva, E.J. Pilau, Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil, Food Research International, 125 (2019) 108647.
[15] N. Azwanida, A review on the extraction methods use in medicinal plants, principle, strength and limitation, Med Aromat Plants, 4 (2015) 2167-0412.1000196.
[16] J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food chemistry, 64.555-559 (1999).
[17] N. Rezaei, A. Salimi, G. Shemshadi, M. Kazemzadeh, A. Jebeli Javan, Optimization of extraction conditions of antioxidant and polyphenolic compounds of Ferula Persica extract by using response surface methodology, Food Science and Technology,151-164 (2019) 15.
[18] F. MAKARI, A.E. GHOLAMALIPOUR, K.J. BAYAT, PHYTOCHEMICAL ANALYSIS OF VARIOUS ORGANS OF RHEUM RIBES WEED AT THE PHONOLOGICAL STAGE OF FLOWERING (CASE STUDY: HEIGHTS OF KARIZAK VILLAGE OF KASHMAR), (2016).
[19] Z. Ma, J. Ahmad, H. Zhang, I. Khan, S. Muhammad, Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food, South African Journal of Botany, 129 (2020) 40-46.
[20] F. Alhakmani, S. Kumar, S.A. Khan, Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera, Asian Pacific journal of tropical biomedicine, 3 (2013) 623.
[21] J.-R. Morelló, M.-P. Romero, T. Ramo, M.-J. Motilva, Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time, Plant Science, 168 (2005) 65-72.
[22] S. Siriamornpun, M. Suttajit, Microchemical components and antioxidant activity of different morphological parts of Thai wild purslane (Portulaca oleracea), Weed Science, 58 (2010) 182-188.
[23] B. Vongsak, P. Sithisarn, S. Mangmool, S. Thongpraditchote, Y. Wongkrajang, W. Gritsanapan, Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method, Industrial Crops and Products, 44 (2013) 566-571.
[24] P. Nobossé, E.N. Fombang, C.M. Mbofung, Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves, Food Science & Nutrition, 6 (2018) 2188-2198.
[25] G. Rocchetti, J.P. Pagnossa, F. Blasi, L. Cossignani, R.H. Piccoli, G. Zengin, D. Montesano, P.S. Cocconcelli, L. Lucini, Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents, Food Research International, 127 (2020) 108712.
[26] B.K. Tiwari, Ultrasound: A clean, green extraction technology, TrAC Trends in Analytical Chemistry, 71 (2015) 100-109.
[27] A. Biswas, M. Chatli, J. Sahoo, Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage, Food Chemistry, 13467-472 (2012) 3.
[28] B. Sanganna, H.R. Chitme, K. Vrunda, M.J. Jamadar, Antiproliferative and antioxidant activity of leaves extracts of Moringa oleifera, Int J Curr Pharm Res, 8 (2016) 54-56.
[29] F.Q. Yang, M. Liu, W. Li, J.P. Che, G.C. Wang, J.H. Zheng, Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA‑21, Molecular medicine reports, 11 (2015) 1085-1092.
[30] L. Li, J. Lin, G. Sun, L. Wei, A. Shen, M. Zhang, J. Peng, Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways, Molecular medicine reports, 13 (2016) 5276-5282.