مقایسه جامع فعالیت آنتی اکسیدانی پپتیدهای زیست فعال تولیدشده از ضایعات ماهی، مرغ و میگو با استفاده از آنزیم فلاورزیم

نویسندگان
1 دانش آموخته دکتری تخصصی- دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 استاد، دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده
با توجه به نگرانی­های موجود در زمینه استفاده از آنتی­اکسیدان­های سنتتیک در صنایع غذایی، شناسایی و بهره­گیری از موادی حاوی آنتی­اکسیدان­های طبیعی ضروری به نظر می­رسد. ضایعات پروتئینی یکی از این مواد هستند که با روش­های مختلف می­توان ترکیبات آنتی­اکسیدانی از آن­ها استخراج کرد. هدف از تحقیق حاضر نیز مقایسه و ارزیابی جامع فعالیت آنتی­اکسیدانی پپتیدهای زیست­فعال تولیدشده از سه منبع ضایعات شامل ماهی (FPH)، مرغ (PPH) و میگو (SPH) با آنزیم فلاورزایم است. لذا پپتیدهای زیست­فعال پس از تولید از این سه منبع از نظر تمام آزمون­های آنتی­اکسیدانی رایج و غیر رایج در صنعت غذا مورد ارزیابی و مقایسه قرار گرفتند. نتایج نشان داد پپتیدهای تولیدشده از این سه منبع (با آنزیم و درجه آبکافت یکسان) از نظر فعالیت آنتی­اکسیدانی متفاوت هستند. در آزمون­های فعالیت مهار رادیکال­­های آزاد DPPH و ABTS، قدرت مهار پراکسیداسیون لینولئیک­اسید و کلاته­کردن فلزات، SPH نسبت به دو پروتئین دیگر به صورت معنی­داری در بالاترین سطح قرار داشت (05/0>p). مقادیر این چهار شاخص در SPH به ترتیب 38/1±45/87، 59/0±26/79، 62/1±56/94 و 37/0±49/71 درصد اندازه­گیری شد. در مورد قدرت کاهندگی یون فریک و فعالیت مهار رادیکال آزاد هیدروکسیل، بین SPH و FPH اختلاف معنی­داری ثبت نشد (05/0<p). همچین از نظر شاخص فعالیت مهار رادیکال آزاد ABTS، FPH و PPH اختلاف قابل ملاحظه­ای ارائه نکردند (به ترتیب 85/0±15/69 و 93/1±44/68 درصد). بر اساس برایند آزمون­های مورد بررسی، در تحقیق حاضر پپتیدهای زیست­فعال تولیدشده از ضایعات میگو (SPH) دارای بیشترین فعالیت آنتی­اکسیدانی بودند. پپتیدهای حاصل از آبکافت ضایعات ماهی (FPH) در رتبه دوم قرار گرفتند. تقریبا در تمامی آزمون­ها، کمترین فعالیت آنتی­اکسیدانی مربوط به پپتیدهای حاصل از ضایعات مرغ (PPH) بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comprehensive comparison of antioxidant activity of bioactive peptides produced from fish, poultry and shrimp wastes using Flavourzyme enzyme

نویسندگان English

Soheyl Reyhani Poul 1
Sakineh Yeganeh 2
1 PhD, Gorgan University of Agricultural Sciences and Natural Resources
2 Professor, Sari Agricultural Sciences and Natural Resources University
چکیده English

Given the concerns regarding the use of synthetic antioxidants in the food industry, it seems necessary to identify and use substances containing natural antioxidants. Protein-containing wastes are one of these substances from which antioxidant compounds can be extracted in various ways. The aim of this study was to compare and comprehensively evaluate the antioxidant activity of bioactive peptides produced from three sources of waste including fish (FPH), poultry (PPH) and shrimp (SPH) with flavourzyme enzyme. Therefore, post-production bioactive peptides from these three sources were compared in term of all common and uncommon antioxidant tests in the food industry. The results showed that the peptides produced from these three sources (with the same enzyme and degree of hydrolysis) were different in terms of antioxidant activity. In free radical scavenging activity tests of DPPH and ABTS, linoleic acid peroxidation inhibition and metal chelating power, SPH was significantly higher than the other two proteins (p<0.05). The values of these four indices in SPH were measured 87.45±1.38%, 79.26±0.59%, 94.56±1.62%, and 71.49±0.37 %, respectively. There was no significant difference between SPH and FPH regarding ferric ion reducing power and hydroxyl free radical scavenging activity (p>0.05). Also, FPH and PPH did not show significant differences in terms of ABTS free radical scavenging activity index (69.15±0.85% and 68.44±1.93% respectively). In general, based on the results of the tests, in the present study, bioactive peptides produced from shrimp wastes (SPH) had the highest antioxidant activity. Peptides from fish wastes hydrolysis (FPH) was ranked second. In almost all tests, the lowest antioxidant activity was related to poultry wastes peptides (PPH).

کلیدواژه‌ها English

Shrimp wastes
Flavourzyme
Bioactive peptides
Antioxidant activity
1. Safari, R., Yaghoubzadeh, Z., Bankehsaz, Z., Reyhani Poul, S., &… 2020. Production of biosilage from chicken waste. Research Project, Caspian Sea Ecology Research Institute (In Persian).
2. Reyhani Poul, S., Jafarpour, A., and Safari, R. 2018. Study of oil fatty acid profile, functional properties and antioxidants activity of hydrolyzate produced from rainbow trout (Oncorhynchus mykiss) viscera by application protamex and neutrase enzymes. Iranian Food Science and Technology Research Journal. 14 (1), 162-176 (In Persian).
3. Elavarasan, K., Naveen Kumar, V., & Shamasundar, B. A. 2014. Antioxidant and Functional Properties of Fish Protein Hydrolysates from Fresh Water Carp (Catla Catla) as Influenced by the Nature of Enzyme. Journal of Food Processing and Preservation, 38(3), 1207-1214.
4. Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry, 102(4), 1317-1327.
5. Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M. (2007). Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology, 45(2), 187.
6. Yeganeh, S., Esmaeili, M., and Ahmadi, H. 2021. Effect of hydrolysis time on the antioxidant activity of Common carp (Cyprinus carpio) head protein hydrolysate. Iranian Scientific Fisheries Journal, 29 (6), 29-42 (In Persian).
7. Shabanpour, B., Kordjazi, M., and Nazari, Khatereh. 2013. Optimization of enzymatic hydrolysis conditions of shrimp (Penaeus semisulcatus) waste protein using the response surface methodology. Aquatics exploitation and farming, 4 (3), 29-50 (In Persian).
8. Ahmadi, A., Yeganeh, S., and Smaili, M. 2020. nvestigation of antioxidant properties of hydrolyzed protein derived from Common carp (Cyprinus carpio) viscera. Journal of Fisheries, 73 (4), 593-606 (In Persian).
9. Reyhani Poul, S and Jafarpour, A. 2016. Effects of degree of hydrolysis on functional properties and antioxidants activity of hydrolysate from head and frame of common carp (Cyprinus carpio) fish. Iranian Journal of Food Science and Technology, 68 (14), 113-124 (In Persian).
10. Shabanpour, B., Kordjazi, M., Nazari, Kh., and Smaeili, M. 2017. Effect of enzymatic hydrolysis time, temperature and enzyme to substrate ratio on antioxidant properties of prawn bioactive peptides. Iranian Journal of Food Science and Technology, 62(14), 31-45 (In Persian).
11. Taheri, A., Jalalinejad, S., and Anvar, A. 2012. Antihypertensive and antioxidant properties of five types of hydrolyzed proteins from shrimp waste (Penaeus indicus). Comparative pathology, 9 (1), 599-608 (In Persian).
12. Ovissipour, M., Benjakul, S., Safari, R., & Motamedzadegan, A. 2010. Fish protein hydrolysates production from yellowfin tuna Thunnus albacares head using alcalase and protamex. International Aquatic Research, 2, 87-95.
13. Ovissipour, M., Safari, R., Motamedzadegan, A., & Shabanpour, B. 2012. Chemical and biochemical hydrolysis of Persian sturgeon (Acipenser persicus) visceral protein. Food and Bioprocess Technology, 5(2), 460-465.
14. Guerard, F., Guimas, L., & Binet, A. 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic, 19, 489-498.
15. Layne, E. 1957. [73] Spectrophotometric and turbidimetric methods for measuring proteins. Methods in enzymology, 3, 447-454.
16. Hoyle, N. T., & Merritt, J. O. H. N. 1994. Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1), 76-79.
17. Iranian National Standard No. 924, 1993. Measurement of total protein in meat and its products. Iran Institute of Standards and Industrial Research (In Persian).
18. AOAC .2005. Official method of Analysis. 17th Edition, Association of Officiating Analytical Chemists, Washington DC.
19. Yen, G. C., & Wu, J. Y. 1999. Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chemistry, 65(3), 375-37.
20. Oyaiza, M. 1986. Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Journal of nutrition. 44, 307–315.
21. Decker, E. A., & Welch, B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 38(3), 674-677.
22. Alemán, A., Pérez-Santín, E., Bordenave-Juchereau, S., Arnaudin, I., Gómez-Guillén, M. C., & Montero, P. 2011. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 44(4), 1044-1051.
23. Chung, S.K., Osawa, T., and Kawakishi, S. 1997. Hydroxyl radical scavenging effects of spices and scavengers from Brown Mustard (Brassica nigra). Journal of Bioscience, Biotechnology, and Biochemistry, 61, 118–123.
24. Mitsuda, H. 1966. Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to shokuryo, 19, 210-221.
25. Osawa, T., & Namiki, M. 1985. Natural antioxidants isolated from Eucalyptus leaf waxes. Journal of Agricultural and Food Chemistry, 33(5), 777-780.
26. Taheri, A., Anvar, S. A. A., Ahari, H., & Fogliano, V. 2013. Comparison the functional properties of protein Hydrolysates from poultry byproducts and rainbow trout (Onchorhynchus mykiss) viscera. Iranian Journal of Fisheries Sciences, 12(1), 154-169.
27. Muzaifa, M., Safriani, N., & Zakaria, F. 2012. Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. International Journal of the Bioflux Society, 5, 36-39.
28. Dey, S. S., & Dora, K. C. 2014. Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus). Journal of food science and technology, 51(3), 449-457.
29. Reyhani Poul, S., Jafarpour, A., and Safari, R. 2017. Functional and antioxidant properties of fish protein hydrolysate from rainbow trout (Oncorhynchus mykiss) viscera by enzymatic method. Scientific - Research Journal, 5 (4), 13-28 (In Persian).
30. Bakhshan, A., Alizade dughikalayi, A., & Taheri, A. 2014. Study of antioxidats properties of hydrolyzate from waste of Salmon (Salmo salar) in filleting process. Comparative pathobiology, 11 (1), 1152-1143 (In Persian).
31. Foh, M. B. K., Amadou, I., Foh, B. M., Kamara, M. T., & Xia, W. 2010. Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. International journal of molecular sciences, 11(4), 1851-1869.
32. Centenaro, G. S., Centenaro, M. S., & Hernandez, C. P. 2011. Antioxidant activity of protein hydrolysates of fish and chicken bones. Advance Journal of Food Science and Technology, 3(4), 280-288
33. Centenaro, G. S., Salas-Mellado, M., Pires, C., Batista, I., Nunes, M. L., & Prentice, C. 2014. Fractionation of protein hydrolysates of fish and chicken using membrane ultrafiltration: investigation of antioxidant activity. Applied biochemistry and biotechnology, 172(6), 2877-2893.
34. Sun, Y., Pan, D., Guo, Y., & Li, J. 2012. Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity. Food and Chemical Toxicology, 50(10), 3397-3404.
35. Nalinanon, S., Benjakul, S., Kishimura, H., & Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124(4), 1354-1362.
36. Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical science, 84(4), 407-412.
37. Rossini, K., Norena, C. P., Cladera-Olivera, F., & Brandelli, A. 2009. Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat. LWT-food Science and Technology, 42(4), 862-867.
38. Miliauskas, G., Venskutonis, P. R., & Van Beek, T. A. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry, 85(2), 231-237.
39. Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., & Nunes, M. L. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbard fish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1), 18-24.
40. Naqash, S. Y., & Nazeer, R. A. 2013. Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. Journal of Food Science and Technology, 50(5), 972-978.