مقایسه سینتیک خشک کردن برگ نعناع با خشک کن خورشیدی فتوولتائیک / گرمایی با خشک کردن طبیعی

نویسندگان
1 دانشجوی دکتری گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد
2 استاد گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3 استادیار دانشکده کشاورزی، دانشگاه بیرجند، بیرجند
چکیده
در این تحقیق یک خشک کن خورشیدی ترکیبی فتوولتائیک /گرمایی حاوی مواد تغییر فاز به منظور خشک کردن برگ های نعناع طراحی و ساخته شد. عملکرد این خشک کن تحت شرایط آب و هوایی مشهد با طول جغرافیایی 62/59 درجه و عرض جغرافیایی 26/36 درجه مورد بررسی قرار گرفت. اجزای اصلی این خشک کن عبارتند از : پنل فتوولتائیک، کلکتور خورشیدی، فن های دمنده، محفظه حاوی مواد تغییر فاز پارافین آلی و محفظه محصول. آزمایشات خشک کردن بر روی برگ های نعناع به دو روش خشک کردن با خشک کن خورشیدی ترکیبی و خشک کردن طبیعی در سایه با رطوبت اولیه 80 درصد بر پایه تر انجام گرفت و تا رسیدن به رطوبت 12 درصد ادامه یافت. مدت زمان خشک کردن با خشک کن خورشیدی 290 دقیقه و به روش طبیعی 1560 دقیقه طول کشید. داده های آزمایشگاهی با هشت مدل خشک کردن لایه نازک در پیشینه پژوهش برازش گردید که مدل دوجمله ای و مدل وانگ و سینق به ترتیب بهترین مدل ها برای خشک کردن طبیعی و با خشک کن خورشیدی ترکیبی بودند. این مدل ها نسبت به مدل های دیگر بیشترین تطبیق را با نسبت رطوبت آزمایشی ( بالاترین ضریب همبستگی و حداقل ریشه میانگین مربعات خطا و مربع کای ) دارند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of drying kinetics of mint leaves by photovoltaic / thermal solar dryer and natural drying

نویسندگان English

Mohammad Reza Rouzegar 1
Mohammad Hossein Abbaspour-Fard 2
Mahdi Hedayatizadeh 3
Hamid Mohamadinezhad 1
1 PhD Student of Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Professor of Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Assistant Professor oF Faculty of Agriculture, University of Birjand, Birjand
چکیده English

In this research, a combined photovoltaic / thermal solar dryer containing phase change materials (PCM) was designed and fabricated for drying mint leaves. The performance of this dryer was evaluated under the climatic conditions of Mashhad city with a longitude of 59.62 and a latitude of 36.26. The components of this dryer mainly include: photovoltaic panel, solar collector, blowers, phase change material chamber containing paraffin wax and drying chamber. Solar dryer and natural drying in shade as two different drying types were used to perform experiments on mint leaves. The initial moisture content of the mint leaves was 80% which reduced to 12%. The required drying time for the combined solar drying and natural drying was 290 minutes and 1560 minutes, respectively. Eight thin layer drying models available in the literature were fitted to the experimental data in which the Two-term model and the Wang and Singh model were the best fit models for natural and combined solar drying respectively. These models have the highest correlation (highest coefficient of determination and least root mean square error and Chi-square) with the experimental moisture ratio among the other models.

کلیدواژه‌ها English

Solar dryer
Drying kinetics
Photovoltaic / Thermal
Phase Change Materials
Mint
[1] Kumar, M., Sansaniwal, S.K. and Khatak, P. 2016. Progress in solar dryers for drying various commodities. Renewable and Sustainable Energy Reviews. 55. 346-360.
[2] Zarezade, M. and Mostafaeipour, A. 2016. Identifying the effective factors on implementing the solar dryers for Yazd province, Iran. Renewable and Sustainable Energy Reviews. 57. 765-775.
[3] Moradi, M., Fallahi, M.A. and Mousavi Khaneghah, A. 2020. Kinetics and mathematical modeling of thin layer drying of mint leaves by a hot water recirculating solar dryer. Journal of Food Process Engineering. 43(1). 13181.
[4] Eltawil, M.A., Azam, M.M. and Alghannam, A.O. 2018. Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis). Journal of Cleaner Production. 181. 352-364.
[5] Ashtiani, S.H.M., Salarikia, A. and Golzarian, M.R. 2017. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Information Processing in Agriculture. 4(2). 128-139.
[6] Habibi Asl, J., Behbahani, L. and Azizi, A. 2017. Evaluation and comparing of natural and forced solar dryer for mint drying in Khuzestan province. Journal of Agricultural Machinery. 7 (1). 114-125.
[7] El-Sebaii, A.A. and Shalaby, S.M. 2013. Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint. Energy conversion and management. 74. 109-116.
[8] Shalaby, S.M. and Bek, M.A. 2014. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy conversion and management. 83. 1-8.
[9] Bhardwaj, A.K., Kumar, R., Kumar, S., Goel, B. and Chauhan, R. 2021. Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM. Sustainable Energy Technologies and Assessments. 45. 101119.
[10] Pakhare, V.V. and Salve, S.P. 2016. Design and development of solar dryer cabinet with thermal energy storage for drying chilies. Int. J. Curr. Eng. Tech. 358. 362.
[11] Devahastin, S. and Pitaksuriyarat, S. 2006. Use of latent heat storage to conserve energy during drying and its effect on drying kinetics of a food product. Applied Thermal Engineering. 26(14). 1705-1713.
[12] Lakshmi, D.V.N., Muthukumar, P., Layek, A. and Nayak, P.K. 2018. Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renewable Energy. 120. 23-34.
[13] Çakmak, G. and Yıldız, C. 2011. The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food and bioproducts processing. 89(2). 103-108.
[14] Pawar, R.S., Takwale, M.G. and Bhide, V.G. 1995. Solar drying of custard powder. Energy conversion and management. 36(11). 1085-1096.
[15] Barnwal, P. and Tiwari, G.N. 2008. Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study. Solar energy. 82(12). 1131-1144.
[16] Tiwari, S., Tiwari, G.N. and Al-Helal, I.M. 2016. Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Solar Energy. 133. 421-428.
[17] Mbegbu, N.N., Nwajinka, C.O. and Amaefule, D.O., 2021. Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon. 7(1). e05945.
[18] Tarafdar, A., Jothi, N. and Kaur, B.P. 2021. Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa olifera leaves followed by determination of energy consumption and mass transfer parameters. Journal of Applied Research on Medicinal and Aromatic Plants. 100306.
[19] Ye, L., EL-Mesery, H.S., Ashfaq, M.M., Shi, Y., Zicheng, H. and Alshaer, W.G. 2021. Analysis of energy and specific energy requirements in various drying process of mint leaves. Case Studies in Thermal Engineering. 101113.
[20] Nadi, F. and Tzempelikos, D. 2018. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters. Heat and Mass Transfer. 54(7). 1853-1866.
[21] Jahanbakhshi, A., Kaveh, M., Taghinezhad, E. and Rasooli Sharabiani, V. 2020. Assessment of kinetics, effective moisture diffusivity, specific energy consumption, shrinkage, and color in the pistachio kernel drying process in microwave drying with ultrasonic pretreatment. Journal of Food Processing and Preservation. 44(6). 1444.
[22] Rabha, D.K., Muthukumar, P. and Somayaji, C. 2017. Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer. Renewable energy 105. 583-589.
[23] Özbek, B. and Dadali, G. 2007. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering. 83(4). 541-549.
[24] Akpinar, E.K. 2006. Mathematical modelling of thin layer drying process under open sun of some aromatic plants. Journal of Food Engineering. 77(4). 864-870.
[25] Jayas, D.S., Cenkowski, S., Pabis, S. and Muir, W.E. 1991. Review of thin-layer drying and wetting equations. Drying technology. 9(3). 551-588.
[26] Vijayaraj, B., Saravanan, R. and Renganarayanan, S. 2007. Studies on thin layer drying of bagasse. International Journal of Energy Research. 31(4). 422-437.
[27] Chhinnan, M.S. 1984. Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Transactions of the ASAE. 27(2). 610-0615.
[28] Balasubramanian, S., Sharma, R., Gupta, R.K. and Patil, R.T. 2011. Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves. Journal of food science and technology. 48(6). 685-691.
[29] Midilli, A. and Kucuk, H. 2003. Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy conversion and Management. 44(7). 1111-1122.
[30] Henderson, S.M. 1974. Progress in developing the thin layer drying equation. Transactions of the ASAE. 17(6). 1167-1168.
[31] Kassem, A.S. 1998, February. Comparative studies on thin layer drying models for wheat. In 13th international congress on agricultural engineering. 6. 2-6.
[32] Sallam, Y.I., Aly, M.H., Nassar, A.F. and Mohamed, E.A. 2015. Solar drying of whole mint plant under natural and forced convection. Journal of advanced research. 6(2). 171-178.