مروری بر کاربرد ترکیبات ضد میکروبی طبیعی با منشاء گیاهی، حیوانی و میکروبی در مواد غذایی

نویسندگان
1 استادیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
2 دانشجوی‌‌کارشناسی‌ارشد، گروه‌ علوم ‌و ‌صنایع‌غذایی، دانشکده ‌کشاورزی، دانشگاه‌ ارومیه، ارومیه، ایران
چکیده
در سال­های اخیر استفاده از ترکیبات ضد میکروبی طبیعی در موادغذایی توجه مصرف­کنندگان و محققان را به خود جلب کرده است که دو دلیل عمده این موضوع مصرف بی­رویه و نادرست آنتی­بیوتیک­ها است که به دلیل فشار انتخابی اعمال شده به میکروارگانیسم­ها منجر به ایجاد مقاومت در برابر آنتی­بیوتیک­ها می­شود در نتیجه این شرایط یک گروه از میکروارگانیسم­ها از جمله پاتوژن­ها در موادغذایی افزایش می­یابد که نه تنها مقاوم در برابر آنتی­بیوتیک­ها هستند بلکه در برابر فرآوری موادغذایی و روش­های نگهداری نیز پایدارند عامل دوم افزایش سطح آگاهی مردم از تاثیرات بالقوه­ی منفی نگهدارنده­های مصنوعی بر سلامتی در مقابل نگهدارنده­های طبیعی است که توجه بسیاری از پژوهشگران را به استفاده بیشتر از نگهدارنده­های طبیعی در موادغذایی معطوف کرده است. بسیاری از ترکیبات به دست آمده از منابع طبیعی دارای خواص ضد ­میکروبی بوده و می­توان از آنها جهت حفظ ایمنی مواد غذایی استفاده نمود. امروزه استفاده از نگهدارنده­های مواد غذایی به یک امر ضروری تبدیل شده است که نقش مهمی را در نگهداری و حمل و نقل مواد ایفا می­کنند اهدافی که از افزودن مواد نگهدارنده به موادغذایی دنبال می­شود عبارتند از: حفظ خصوصیات ظاهری موادغذایی، کمک به حفظ خواص ارگانولپتیکی و افزایش ماندگاری موادغذایی. ما در این مقاله مروری به بررسی فعالیت ضد میکروبی برخی از ترکیبات طبیعی بدست آمده از منابع مختلف و مکانیسم عمل آنها خواهیم پرداخت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

An overview of the application of natural antimicrobial compounds from plant, animal and microbial origin in foods

نویسندگان English

Saber Amiri 1
Meysam Rajabi 2
1 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
2 M.Sc. Student, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده English

In recent years, the use of natural antimicrobial compounds in food has attracted the attention of consumers and researchers, the two main reasons for this is the excessive and incorrect use of antibiotics due to the selective pressure it exerts on microorganisms It creates resistance to antibiotics, thus increasing a group of microorganisms, including pathogens in food, which are not only resistant to antibiotics but also resistant to food processing and storage methods. Increasing public awareness of the potential negative effects of artificial preservatives on human health versus natural additives has led many researchers to focus more on the use of natural preservatives in food. Many compounds obtained from natural sources have antimicrobial properties and can be used to maintain food safety. Today, the use of food preservatives has become a necessity that plays an important role in the storage and transportation of food. The goals of adding preservatives to foods are to preserve the appearance of the food, to help preserve the organoleptic properties, and to increase the shelf life of the food. In this review article, we will examine the antimicrobial activity of some natural compounds obtained from different sources and their mechanism of action.

کلیدواژه‌ها English

Food safety
Food additive
Natural preservatives
Antimicrobial compounds
Essential oils
Mechanism of antimicrobial effect
[1] Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., & Amiri, S. (2019). New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28(2), 423-432.
[2] Tajkarimi, M., Ibrahim, S., & Cliver, D. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199e1218.
[3] Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1): 191-203.
[4] Ghamari, M. A., Amiri, S., Rezazadeh-Bari, M., & Rezazad-Bari, L. (2021). Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polymer Bulletin, 1-21.
[5] Hassoun, Abdo, et al. "Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review." Antioxidants 9.9 (2020): 882.
[6] Asdagh, A., & Pirsa, S. (2020). Bacterial and oxidative control of local butter with smart/active film based on pectin/nanoclay/Carum copticum essential oils/β-carotene. International Journal of Biological Macromolecules, 165, 156-168. ‏
[7] Jafari, A., Esmaiili, M., Amiri, S., & Heidari, R. (2021). Rheological, antioxidant, physicochemical, and biochemical characterization of Iranian monofloral honeys. Journal of Food and Bioprocess Engineering, 4(1), 43-52. ‏
[8] Pirsa, S., Farshchi, E., & Roufegarinejad, L. (2020). Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. Journal of Polymers and the Environment, 28(12), 3154-3163. ‏
[9] Seetaramaiah, K., Smith, A. A., Murali, R., & Manavalan, R. (2011). International journal of pharmaceutical and biological archive: 583-99.
[10] Sagdic, O., Ozturk, I., Yilmaz, M., & Yetim, H. (2011). Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. Journal of Food Science,76: 515-521.
[11] Asdagh, A., Sani, I. K., Pirsa, S., Amiri, S., Shariatifar, N., Eghbaljoo–Gharehgheshlaghi, H., ... & Taniyan, A. (2021). Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. Journal of Polymers and the Environment, 29(1), 335-349. ‏
[12] Dinesh, P., Boghra, V., & Sharma, R. (2000). Effect of antioxidant principles isolated from mango (Mangifera indica L.) seed kernels on oxidative stability of ghee (butter fat). Journal of Food Science and Technology,37: 6-10.
[13] Rabin, G., & Salam, A. (2014). Natural products as antimicrobial agents. Food Control, 46: 412-429.
[14] Agourram, A., Ghirardello, D., Rantsiou, K., Zeppa, G., Belviso, S., Romane, A., ... & Giordano, M. (2013). Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. International Journal of Food Properties, 16(5), 1092-110.
[15] Wonghirundecha, S., & Sumpavapol, P. (2012). Antibacterial activity of selected plant by-products against foodborne pathogenic bacteria. In International Conference on Nutrition and Food Sciences, 39, (11) 116-120.
[16] Sagdic, O., Ozturk, I., Yilmaz, M. T., & Yetim, H. (2011). Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. Journal of Food Science, 76(7), M515-M521. ‏
[17] De Sotillo, D. R., Hadley, M., & Wolf‐Hall, C. (1998). Potato peel extract a nonmutagenic antioxidant with potential antimicrobial activity. Journal of Food Science, 63(5), 907-910. ‏
[18] Friedman, M., Henika, P. R., & Levin, C. E. (2013). Bactericidal activities of health‐promoting, food‐derived powders against the foodborne pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. Journal of Food Science, 78(2), M270-M275. ‏
[19] Bevilacqua, A., Ficelo, S., Corbo, M. R., & Sinigaglia, M. (2010). Bioactivity of grapefruit seed extract against Pseudomonas spp. Journal of Food Processing and Preservation, 34(3), 495-507. ‏
[20] Taveira, M., Silva, L., Vale-Silva, L., Pinto, E., Valentaeo, P., & Ferreres, F. (2010). Lycopersicon esculentum seeds: an industrial byproduct as an antimicrobial agent. Journal of Agricultural and Food Chemistry, 58: 9529-9536
[21] Moghanjougi, Z. M., Bari, M. R., Khaledabad, M. A., Almasi, H., & Amiri, S. (2020). Bio-preservation of white brined cheese (Feta) by using probiotic bacteria immobilized in bacterial cellulose: Optimization by response surface method and characterization. LWT, 117, 108603.
[22] Arnold, R. R., Russell, J. E., Champion, W. J., & Gauthier, J. J. (1981). Bactericidal activity of human lactoferrin: influence of physical conditions and metabolic state of the target microorganism. Infection and Immunity, 32(2), 655-660. ‏
[23] Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Frontiers in Immunology, 11, 1221. ‏
[24] Campione, E., Cosio, T., Rosa, L., Lanna, C., Di Girolamo, S., Gaziano, R., ... & Bianchi, L. (2020). Lactoferrin as protective natural barrier of respiratory and intestinal mucosa against coronavirus infection and inflammation. International Journal of Molecular Sciences, 21(14), 4903. ‏
[25] Baker, E. N., Baker, H. M., & Kidd, R. D. (2002). Lactoferrin and transferrin: functional variations on a common structural framework. Biochemistry and Cell Biology, 80(1), 27-34. ‏
[26] Al-Nabulsi, A., & Holley, R. (2005). Effect of bovine lactoferrin against Carnobacterium viridans. Food Microbiology, 22: 179-18
[27] Zhao, D., Dai, S, Y., & Yang, B. (2009). Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innovative Food Science & Emerging Technologies10: 103-107
[28] Vishu Kumar, A. B., Varadaraj, M. C., Gowda, L. R., & Tharanathan, R. N. (2005). Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochemical Journal, 391(2), 167-175. ‏
[29] Mohammadi, B., Pirsa, S., & Alizadeh, M. (2019). Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polymers and Polymer Composites, 27(8), 507-517. ‏
[30] Percot, A., Viton, C., & Domard, A. (2003). Optimization of chitin extraction from shrimp shells. Biomacromolecules, 4(1), 12-18. ‏
[31] Roller, S., & Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47(1-2), 67-77. ‏
[32] Sudarshan, N. R., Hoover, D. G., & Knorr, D. (1992). Antibacterial action of chitosan. Food Biotechnology, 6(3), 257-272. ‏
[33] Hadwiger, L. A., Kendra, D. F., Fristensky, B. W., & Wagoner, W. (1986). Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In Chitin in nature and technology (209-214). Springer, Boston, MA. ‏
[34] Cegielska-Radziejewska, R., Lesnierowski, G, & Kijowski, J. (2009). Antibacterial activity of hen egg white lysozyme modified by thermochemical technique. European Food Research and Technology, 228: 841-845.
[35] Cooper, C. A., Klobas, L. C. G., Maga, E. A., & Murray, J. D. (2013). Consuming transgenic goats' milk containing the antimicrobial protein lysozyme helps resolve diarrhea in young pigs. PloS one, 8(3), e58409.
[36] Abdou, A., Higashiguchi, S., Aboueleinin, A., Kim, M., & Ibrahim, H. (2007). Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control.18: 173-178.
[37] Korhonen, H. J., & Rokka, S. (2010). Properties and applications of antimicrobial proteins and peptides from milk and eggs. Bioactive food proteins and peptides: Applications in human health, 49. ‏
[38] Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C., & Stanton, C. (2006). Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology, 72(3), 2260-2264. ‏
[39] Juneja, V. K., Dwivedi, H. P., & Yan, X. (2012). Novel natural food antimicrobials. Annual review of food science and technology, 3, 381-403. ‏
[40] Potter, R., Hansen, L. T., & Gill, T. A. (2005). Inhibition of foodborne bacteria by native and modified protamine: Importance of electrostatic interactions. International Journal of Food Microbiology, 103(1), 23-34. ‏
[41] Taormina, P. J. (2012). -Competitive research and development on antimicrobials and food preservatives. In Microbiological Research and Development for the Food Industry (pp. 120-171). CRC Press. ‏
[42] Lönnerdal, B. (2011). Biological effects of novel bovine milk fractions. Milk and milk products in human nutrition, 67, 41-54. ‏
[43] Amiri, S., Rezazadeh Bari, M., Alizadeh Khaledabad, M., Rezaei Mokarram, R., & Sowti Khiabani, M. (2021). Co-production of parabiotic metabolites by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12 in dairy effluents. Chemical Review and Letters, 4(2), 66-76.
[44] Cortés-Zavaleta O, López-Malo A,Hernández-Mendoza A,García H. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. International Journal of Food microbiology. 2014; 173:30-5
[45] Amiri, S., Aghamirzaei, M., Mostashari, P., Sarbazi, M., Tizchang, S., & Madahi, H. (2021). The impact of biotechnology on dairy industry. In Microbial biotechnology in food and health (pp. 53-79). Academic Press.
[46] Muhialdin BJ, Hassan Z. Screening of lactic acid bacteria for antifungal activity against Aspergillus oryzae. American Journal of Applied Sciences. 2011;8(5):447
[47] Sohrabpour, S., Rezazadeh Bari, M., Alizadeh, M., & Amiri, S. (2021). Investigation of the rheological, microbial, and physicochemical properties of developed synbiotic yogurt containing Lactobacillus acidophilus LA‐5, honey, and cinnamon extract. Journal of Food Processing and Preservation, 45(4), e15323.
[48] Crowley S, Mahony J, van Sinderen D.Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology.2013;33(2):93-109.
[49] Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. (2004). Trends in Food Science & Technology. 15(2):67-78.
[50] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Alizadeh, M. (2020). Optimization of food-grade medium for co-production of bioactive substances by Lactobacillus acidophilus LA-5 for explaining pharmabiotic mechanisms of probiotic. Journal of Food Science and Technology, 1-12.
[51] Amiri, S., Moghanjougi, Z. M., Bari, M. R., & Khaneghah, A. M. (2021). Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science, 33(SP1), 55-68.
[52] Amiri, S., Sowti Khiabani, M., Rezazadeh Bari, M., & Alizadeh, M. (2019). Production of bacteriocin in batch fermentation of dairy effluents by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. Food Science and Technology, 16(90), 163-175.
[53] Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezaei-Mokarram, R., & Sowti-Khiabani, M. (2021). Fermentation optimization for co-production of postbiotics by Bifidobacterium lactis BB12 in cheese whey. Waste and Biomass Valorization, 1-16.
[54] Martinez FAC, Balciunas EM, Salgado JM,González JMD, Converti A, de Souza Oliveira
RP. Lactic acid properties, applications and production: A review. Trends in Food Science & Technology. 2013;30(1):70-83.
[55] Christ, K., Wiedemann, I., Bakowsky, U., Sahl, H. G., & Bendas, G. (2007). The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768(3), 694-704. ‏
[56] Peirano, G., van der Bij, A. K., Freeman, J. L., Poirel, L., Nordmann, P., Costello, M., ... & Pitout, J. D. (2014). Characteristics of Escherichia coli sequence type 131 isolates that produce extended-spectrum β-lactamases: global distribution of the H 30-Rx sublineage. Antimicrobial agents and chemotherapy, 58(7), 3762-3767. ‏
[57] Zadeh, M. N., Pirsa, S., Amiri, S., & Bari, L. R. (2020). Application of the Edible Coating of Carboxy Methyl Cellulose/Pectin Composite Containing Humulus lupulus Extract on the Shelf Life of Fresh Cute Oranges at Cold Conditions. Iraninan Journal of Biosystem engeeniering, 51, 471-484.
[58] Sadeghnezhad, Z., Amiri, S., Rezazadeh-Bari, M., & Almasi, H. (2020). Physical and morphological characteristics of edible composite film of sodium caseinate/pectin/zedo gum containing poulk (Stachys schtschegleevii) extract: optimizing bioactivity and physicochemical properties. Journal of Packaging Technology and Research, 4, 187-203.
[59] Watson, S., & Cruz-Rivera, E. (2003). Algal chemical ecology: an introduction to the special issue. Phycologia, 42: 319-323.
[60] Salvador, N., Gamenta, A., Lavelli, L. and Ribera, A. (2007). Antimicrobial activity of Iberian macroalgae. Scientica Marina, 71: 101-113.