[1] Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., & Amiri, S. (2019). New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release. Food Science and Biotechnology, 28(2), 423-432.
[2] Tajkarimi, M., Ibrahim, S., & Cliver, D. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199e1218.
[3] Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1): 191-203.
[4] Ghamari, M. A., Amiri, S., Rezazadeh-Bari, M., & Rezazad-Bari, L. (2021). Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polymer Bulletin, 1-21.
[5] Hassoun, Abdo, et al. "Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review." Antioxidants 9.9 (2020): 882.
[6] Asdagh, A., & Pirsa, S. (2020). Bacterial and oxidative control of local butter with smart/active film based on pectin/nanoclay/Carum copticum essential oils/β-carotene. International Journal of Biological Macromolecules, 165, 156-168.
[7] Jafari, A., Esmaiili, M., Amiri, S., & Heidari, R. (2021). Rheological, antioxidant, physicochemical, and biochemical characterization of Iranian monofloral honeys. Journal of Food and Bioprocess Engineering, 4(1), 43-52.
[8] Pirsa, S., Farshchi, E., & Roufegarinejad, L. (2020). Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. Journal of Polymers and the Environment, 28(12), 3154-3163.
[9] Seetaramaiah, K., Smith, A. A., Murali, R., & Manavalan, R. (2011). International journal of pharmaceutical and biological archive: 583-99.
[10] Sagdic, O., Ozturk, I., Yilmaz, M., & Yetim, H. (2011). Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. Journal of Food Science,76: 515-521.
[11] Asdagh, A., Sani, I. K., Pirsa, S., Amiri, S., Shariatifar, N., Eghbaljoo–Gharehgheshlaghi, H., ... & Taniyan, A. (2021). Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. Journal of Polymers and the Environment, 29(1), 335-349.
[12] Dinesh, P., Boghra, V., & Sharma, R. (2000). Effect of antioxidant principles isolated from mango (Mangifera indica L.) seed kernels on oxidative stability of ghee (butter fat). Journal of Food Science and Technology,37: 6-10.
[13] Rabin, G., & Salam, A. (2014). Natural products as antimicrobial agents. Food Control, 46: 412-429.
[14] Agourram, A., Ghirardello, D., Rantsiou, K., Zeppa, G., Belviso, S., Romane, A., ... & Giordano, M. (2013). Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. International Journal of Food Properties, 16(5), 1092-110.
[15] Wonghirundecha, S., & Sumpavapol, P. (2012). Antibacterial activity of selected plant by-products against foodborne pathogenic bacteria. In International Conference on Nutrition and Food Sciences, 39, (11) 116-120.
[16] Sagdic, O., Ozturk, I., Yilmaz, M. T., & Yetim, H. (2011). Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. Journal of Food Science, 76(7), M515-M521.
[17] De Sotillo, D. R., Hadley, M., & Wolf‐Hall, C. (1998). Potato peel extract a nonmutagenic antioxidant with potential antimicrobial activity. Journal of Food Science, 63(5), 907-910.
[18] Friedman, M., Henika, P. R., & Levin, C. E. (2013). Bactericidal activities of health‐promoting, food‐derived powders against the foodborne pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. Journal of Food Science, 78(2), M270-M275.
[19] Bevilacqua, A., Ficelo, S., Corbo, M. R., & Sinigaglia, M. (2010). Bioactivity of grapefruit seed extract against Pseudomonas spp. Journal of Food Processing and Preservation, 34(3), 495-507.
[20] Taveira, M., Silva, L., Vale-Silva, L., Pinto, E., Valentaeo, P., & Ferreres, F. (2010). Lycopersicon esculentum seeds: an industrial byproduct as an antimicrobial agent. Journal of Agricultural and Food Chemistry, 58: 9529-9536
[21] Moghanjougi, Z. M., Bari, M. R., Khaledabad, M. A., Almasi, H., & Amiri, S. (2020). Bio-preservation of white brined cheese (Feta) by using probiotic bacteria immobilized in bacterial cellulose: Optimization by response surface method and characterization. LWT, 117, 108603.
[22] Arnold, R. R., Russell, J. E., Champion, W. J., & Gauthier, J. J. (1981). Bactericidal activity of human lactoferrin: influence of physical conditions and metabolic state of the target microorganism. Infection and Immunity, 32(2), 655-660.
[23] Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Frontiers in Immunology, 11, 1221.
[24] Campione, E., Cosio, T., Rosa, L., Lanna, C., Di Girolamo, S., Gaziano, R., ... & Bianchi, L. (2020). Lactoferrin as protective natural barrier of respiratory and intestinal mucosa against coronavirus infection and inflammation. International Journal of Molecular Sciences, 21(14), 4903.
[25] Baker, E. N., Baker, H. M., & Kidd, R. D. (2002). Lactoferrin and transferrin: functional variations on a common structural framework. Biochemistry and Cell Biology, 80(1), 27-34.
[26] Al-Nabulsi, A., & Holley, R. (2005). Effect of bovine lactoferrin against Carnobacterium viridans. Food Microbiology, 22: 179-18
[27] Zhao, D., Dai, S, Y., & Yang, B. (2009). Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innovative Food Science & Emerging Technologies10: 103-107
[28] Vishu Kumar, A. B., Varadaraj, M. C., Gowda, L. R., & Tharanathan, R. N. (2005). Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochemical Journal, 391(2), 167-175.
[29] Mohammadi, B., Pirsa, S., & Alizadeh, M. (2019). Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polymers and Polymer Composites, 27(8), 507-517.
[30] Percot, A., Viton, C., & Domard, A. (2003). Optimization of chitin extraction from shrimp shells. Biomacromolecules, 4(1), 12-18.
[31] Roller, S., & Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47(1-2), 67-77.
[32] Sudarshan, N. R., Hoover, D. G., & Knorr, D. (1992). Antibacterial action of chitosan. Food Biotechnology, 6(3), 257-272.
[33] Hadwiger, L. A., Kendra, D. F., Fristensky, B. W., & Wagoner, W. (1986). Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In Chitin in nature and technology (209-214). Springer, Boston, MA.
[34] Cegielska-Radziejewska, R., Lesnierowski, G, & Kijowski, J. (2009). Antibacterial activity of hen egg white lysozyme modified by thermochemical technique. European Food Research and Technology, 228: 841-845.
[35] Cooper, C. A., Klobas, L. C. G., Maga, E. A., & Murray, J. D. (2013). Consuming transgenic goats' milk containing the antimicrobial protein lysozyme helps resolve diarrhea in young pigs. PloS one, 8(3), e58409.
[36] Abdou, A., Higashiguchi, S., Aboueleinin, A., Kim, M., & Ibrahim, H. (2007). Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control.18: 173-178.
[37] Korhonen, H. J., & Rokka, S. (2010). Properties and applications of antimicrobial proteins and peptides from milk and eggs. Bioactive food proteins and peptides: Applications in human health, 49.
[38] Hayes, M., Ross, R. P., Fitzgerald, G. F., Hill, C., & Stanton, C. (2006). Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology, 72(3), 2260-2264.
[39] Juneja, V. K., Dwivedi, H. P., & Yan, X. (2012). Novel natural food antimicrobials. Annual review of food science and technology, 3, 381-403.
[40] Potter, R., Hansen, L. T., & Gill, T. A. (2005). Inhibition of foodborne bacteria by native and modified protamine: Importance of electrostatic interactions. International Journal of Food Microbiology, 103(1), 23-34.
[41] Taormina, P. J. (2012). -Competitive research and development on antimicrobials and food preservatives. In Microbiological Research and Development for the Food Industry (pp. 120-171). CRC Press.
[42] Lönnerdal, B. (2011). Biological effects of novel bovine milk fractions. Milk and milk products in human nutrition, 67, 41-54.
[43] Amiri, S., Rezazadeh Bari, M., Alizadeh Khaledabad, M., Rezaei Mokarram, R., & Sowti Khiabani, M. (2021). Co-production of parabiotic metabolites by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12 in dairy effluents. Chemical Review and Letters, 4(2), 66-76.
[44] Cortés-Zavaleta O, López-Malo A,Hernández-Mendoza A,García H. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. International Journal of Food microbiology. 2014; 173:30-5
[45] Amiri, S., Aghamirzaei, M., Mostashari, P., Sarbazi, M., Tizchang, S., & Madahi, H. (2021). The impact of biotechnology on dairy industry. In Microbial biotechnology in food and health (pp. 53-79). Academic Press.
[46] Muhialdin BJ, Hassan Z. Screening of lactic acid bacteria for antifungal activity against Aspergillus oryzae. American Journal of Applied Sciences. 2011;8(5):447
[47] Sohrabpour, S., Rezazadeh Bari, M., Alizadeh, M., & Amiri, S. (2021). Investigation of the rheological, microbial, and physicochemical properties of developed synbiotic yogurt containing Lactobacillus acidophilus LA‐5, honey, and cinnamon extract. Journal of Food Processing and Preservation, 45(4), e15323.
[48] Crowley S, Mahony J, van Sinderen D.Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology.2013;33(2):93-109.
[49] Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. (2004). Trends in Food Science & Technology. 15(2):67-78.
[50] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Alizadeh, M. (2020). Optimization of food-grade medium for co-production of bioactive substances by Lactobacillus acidophilus LA-5 for explaining pharmabiotic mechanisms of probiotic. Journal of Food Science and Technology, 1-12.
[51] Amiri, S., Moghanjougi, Z. M., Bari, M. R., & Khaneghah, A. M. (2021). Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science, 33(SP1), 55-68.
[52] Amiri, S., Sowti Khiabani, M., Rezazadeh Bari, M., & Alizadeh, M. (2019). Production of bacteriocin in batch fermentation of dairy effluents by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. Food Science and Technology, 16(90), 163-175.
[53] Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezaei-Mokarram, R., & Sowti-Khiabani, M. (2021). Fermentation optimization for co-production of postbiotics by Bifidobacterium lactis BB12 in cheese whey. Waste and Biomass Valorization, 1-16.
[54] Martinez FAC, Balciunas EM, Salgado JM,González JMD, Converti A, de Souza Oliveira
RP. Lactic acid properties, applications and production: A review. Trends in Food Science & Technology. 2013;30(1):70-83.
[55] Christ, K., Wiedemann, I., Bakowsky, U., Sahl, H. G., & Bendas, G. (2007). The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768(3), 694-704.
[56] Peirano, G., van der Bij, A. K., Freeman, J. L., Poirel, L., Nordmann, P., Costello, M., ... & Pitout, J. D. (2014). Characteristics of Escherichia coli sequence type 131 isolates that produce extended-spectrum β-lactamases: global distribution of the H 30-Rx sublineage. Antimicrobial agents and chemotherapy, 58(7), 3762-3767.
[57] Zadeh, M. N., Pirsa, S., Amiri, S., & Bari, L. R. (2020). Application of the Edible Coating of Carboxy Methyl Cellulose/Pectin Composite Containing Humulus lupulus Extract on the Shelf Life of Fresh Cute Oranges at Cold Conditions. Iraninan Journal of Biosystem engeeniering, 51, 471-484.
[58] Sadeghnezhad, Z., Amiri, S., Rezazadeh-Bari, M., & Almasi, H. (2020). Physical and morphological characteristics of edible composite film of sodium caseinate/pectin/zedo gum containing poulk (Stachys schtschegleevii) extract: optimizing bioactivity and physicochemical properties. Journal of Packaging Technology and Research, 4, 187-203.
[59] Watson, S., & Cruz-Rivera, E. (2003). Algal chemical ecology: an introduction to the special issue. Phycologia, 42: 319-323.
[60] Salvador, N., Gamenta, A., Lavelli, L. and Ribera, A. (2007). Antimicrobial activity of Iberian macroalgae. Scientica Marina, 71: 101-113.