تعیین خصوصیات کمپلکس سه گانه‌ی ژلاتین- موسیلاژ بزرک (Linum usitatissimum)- اکسید تانیک اسید

نویسندگان
1 دانشجوی کارشناسی ارشد علوم و مهندسی صنایع غذایی، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، 8415683111 اصفهان، ایران، mohseniiut6913@gmail.com.
2 دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، 8415683111 اصفهان، ایران، 03133913357، 03133912254، amirgoli@cc.iut.ac.ir.
3 دانشجوی دکتری علوم و مهندسی صنایع غذایی، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، 8415683111 اصفهان، ایران، maryam.abdollahi@ag.iut.ac.ir.
چکیده
در این مطالعه، کمپلکس سه گانه‌ی موسیلاژ بزرک (FM)-ژلاتین-تانیک اسید اکسید (OTA) در دو شرایط اسیدی و قلیایی تهیه شد. میزان کل زیست پلیمر‌ها و میزان تانیک اسید اکسید اضافه شده به ترتیب 2% (وزنی/وزنی) و 5% (غلظت کل زیست پلیمر‌ها) بود. طیف سنجی مادون قرمز تبدیل فوریه و اسپکتروفوتومتری جامد جهت تایید تشکیل کمپلکس، حجم، حلالیت و محتوای فنولیک کمپلکس انجام شد. سپس، تاثیر غلظت تانیک اسید اکسید شده (5/0، 5/2، 5 و 10%) و دمای واکنش ژلاتین با تانیک اسید اکسید شده (30، 40 و 50 درجه سلسیوس) با کمک میکروسکوپ الکترونی روبشی (SEM)، راندمان کمپلکس و رنگ سنجی اندازه گیری شد. مشخص شد که افزودن تانیک اسید اکسید شده به محلول ژلاتین در pH قلیایی پیوند‌های قوی و یک کمپلکس پایدار ایجاد می‌کند. حلالیت آبی کمپلکس اسیدی (1/6 درصد) بالا‌تر از نمونه قلیایی (6/3 درصد) بود. شرایط بهینه، مرتبط با محتوای فنولیک بالا و حلالیت کم، 5 درصد تانیک اسید اکسید و دمای واکنش 30 درجه سلسیوس بود. این کمپلکس می‌تواند برای کاربرد‌های مختلفی از جمله محافظت از مواد غذایی حساس در برابر اکسیداسیون و رهایش کنترل شده ترکیبات زیست فعال در سیستم‌های تحویل در صنایع غذایی مناسب باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Characterization of tertiary conjugate of gelatin-flaxseed (Linum usitatissimum) mucilage- oxidized tannic acid

نویسندگان English

Farzaneh Mohseni 1
Amir Goli 2
Maryam Abdollahi 3
1 Master student of Food Science and Technology, Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156 83111 Isfahan, Iran, mohseniiut6913@gmail.com.
2 Associated professor, Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156 83111 Isfahan, Iran, +983133913357, +983133912254, amirgoli@cc.iut.ac.ir.
3 PhD student of Food Science and Technology, Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156 83111 Isfahan, Iran, maryam.abdollahi@ag.iut.ac.ir
چکیده English

In this study, a tertiary conjugate of flaxseed mucilage (FM)-gelatin–oxidized tannic acid (OTA) at two acidic and alkali pHs was fabricated. The total amount of biopolymers and added OTA was 2% (w/w solution) and 5 % (of total biopolymers), respectively. Fourier transforms infrared spectroscopy and solid state UV-visible spectroscopy were applied to confirm the complex formation and volume, solubility and phenolic content of the complexes were determined. Then, the effect of OTA concentration (0.5, 2.5, 5 and 10%) and reaction temperature (30, 40 and 50 °C) of gelatin with OTA were also evaluated through scanning electron microscopy analysis, yield complex and colorimetry. It was found that the addition of OTA to gelatin solution at alkali pH created strong bonds and a stable complex. The water solubility of acid complex (6.1%) was higher than that of alkali sample (3.6%). The optimal condition, regarding to high phenolic content and low solubility, was 5% OTA and the reaction temperature of 30 °C. This complex, may be suitable to apply for various applications such as protection of sensitive food ingredients from oxidative stresses and controlled release of bioactive components in delivery systems in food industry.

کلیدواژه‌ها English

Oxidized tannic acid
Flaxseed mucilage
Gelatin
Tertiary complex
Solid state UV-visible spectroscopy
[1] Liu, F., Ma, C., Gao, Y. (2013). Food – grade covalent complexes and their application as nutraceutical delivery systems: A Review. Comprehensive Review of Food Science and Food Safety, 16, 76-95.
[2] Ozdal, T., Capanoglu, E., Altay, F. A review on protein – phenolic interaction and associated changes. Food Research International, 51, 954-970.
[3] Jin, B., Zhou, X., Zhou, S., Liu, Y., Guan, R., Zheng, Z., Liang, Y. (2019). Influence of phenolic acids on the storage and digestion stability of curcumin emulsions based on soy protein-pectin-phenolic acids ternary nano-complexes. Journal of microencapsulation, 36(7), 622-634.
[4] Lee, D.S., Woo, J.Y., Je, J.Y. (2014). Chitosan-hydroxycinnamic acid conjugates: Preparation, antioxidant and antimicrobial activity. Food Chemistry, 148, 97–104.
[5] Liu, F., Wang, D., Ma, C., Gao, Y. (2016). Conjugation of polyphenols prevents lactoferrin from thermal aggregation at neutral pH. Food Hydrocolloids, 58, 49–59.
[6] Curcio, M., Parisi, O.I., Puoci, F., Altimari, I., Spizzirri, U.G., Picci, N. (2012). Antioxidant polymers by free radical grafting on natural polymers. In: Cirillo, G., Iemma, F., Eds. Antioxidant polymers: synthesis, properties, and applications. John Wiley& Sons: Hoboken, NJ; pp. 153-178.
[7] Cao, Y., Xiong, Y.L. (2015). Chlorogenic acid – mediated gel formation of oxidatively stressed myofibrillar protein. Food Chemistry, 180, 235-43.
[8] Anvari, M., Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin – gum Arabic coacervate gels cross- linked by tannic acid. Food Hydrocolloids, 60, 516-521.
[9] Muhoza, B., Xia, S., Zhang, X. (2019). Gelatin and high methyl pectin coacervates crosslinked with tannic acid: The characterization, rheological properties, and application for peppermint oil microencapsulation. Food Hydrocolloids, 97, 105174.
[10] Aewsiri, T., Benjakul, S., Visessanguan, W., Wierenga, P.A., Gruppen, H. (2010). Antioxidative activity and emulsifying properties of cuttlefish skin gelatin – tannic acid complex as influenced by types of interaction. Innovative Food Science and Emerging Technologies, 11, 712-720.
[11] Payne, G.F., Kim, E., Cheng, Y., Wu, H.C., Ghodssi, R., Rubloff, G.W., Bentley, W.E. (2013). Accessing biology’s toolbox for the mesoscale biofabrication of soft matter. Soft Matter, 9(26), 6019–6032.
[12] McClements, D.J. (2006). Non-covalent interactions between proteins and polysaccharides. Biotechnology Advances, 24, 621-625.
[13] Yang, Y., Anvari, M., Pan, C.H., Chung, D. (2012). Characterization of interactions between fish gelatin and gum Arabic in aqueous solutions. Food Chemistry, 135, 555-561.
[14] Koupantsis, T., Pavlidou, E., Paraskevopoulou, A. (2016). Glycerol and tannic acid as applied in the preparation of milk proteins–CMC complex coacervates for flavor encapsulation. Food Hydrocolloids, 57, 62-71.
[15] Zhang, Z., Pan, C.H., Chang, D. (2011). Tannic acid cross – linked gelatin – gum Arabic coacervate microspheres for sustained release of allyl isothiocyanate: characterization and in vitro release study. Food Research International, 44, 1000-1007.
[16] Cole, C.G.B. (2000). Gelatin. In: Francis, F.J., Ed. Encyclopedia of Food Science and Technology. John Wiley & Sons: Hoboken, NJ; pp. 1183-1188.
[17] Toledano, O., Magdassi, S. (1997). Formation of surface active gelatin by covalent attachment of hydrophobic chains. Journal of Colloid Interface Science, 193, 172-177.
[18] Mazza, G., Biliaderis, G. (1989). Functional properties of flaxseed mucilage. Journal of Food Science, 54, 1302-1306.
[19] Kaushik, P., Dowling, K., Barrow, C., Adhikari, B. (2015). Complex coacervation between flaxseed protein isolate and flaxseed gum. Food Research International, 72, 91-97.
[20] Xing, F., Cheng, G., Xing, B., Linrong, Y. (2004). Microencapsulation of capsaicin by the complex coacervation of gelatin, Acacia and tannins. Journal of Applied Polymer Science, 91, 2669-2675.
[21] Hadad, S., Goli, S.A.H. (2018). Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. International Journal of Biological Macromolecules, 114, 408-414.
[22] Pena, C., Caba, K., Eceiza, A., Ruseckaite, R., Mondragon, I. (2010). Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 101, 6836-6842.
[23] Wang, B., Adhikari, B., Bandrow, C. (2014). Optimisation of the microencapsulation of tuna oil in gelatin – sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358-365.
[24] Glaucia, A., Bozza, F., Thomazini, M., Bolini, H., Trindade, C. (2013). Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chemistry, 139, 72-78.
[25] Wu, J., Chen, S., Ge, S., Miao, J., Li, J., Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) Skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32, 42-51.
[26] Pavia, D., Lampman, G.M., Kriz, G.S, Vyvyan, J.R. (2009). Introduction to spectroscopy. Brooks cole, 381-417.
[27] Prigent, S.V.E., Gruppen, H., Visser, A.J.W.G., Koningsveld, G.A.H.D., Alfons, G.J.V. (2003). Effects of non- cavalent interactions with 5-o- caffeoylquinic acid (CGA) on the heat denaturation and solubility of globular proteins. Journal of Agricultural and Food Chemistry, 51, 5088-5950.
[28] Ozdal, T., Yalcinkaya, I.E., Toydemir, G., Capanoglu, E. (2019). Polyphenol-Protein Interactions and Changes in Functional Properties and Digestibility. 566-577.
[29] Gómez-Mascaraque, L.G., Martínez-Sanz, M., Fabra, M.J., López-Rubio, A. (2019). Development of gelatin-coated ι-carrageenan hydrogel capsules by electric field-aided extrusion. Impact of phenolic compounds on their performance. Food hydrocolloids, 90, 523-533.