اثر فراصوت و بسته بندی های ضد میکروبی حاوی نانو اکسید روی بر غیر فعال سازی ساکارومایسز سرویزیه و اشرشیاکلی در آب توت فرنگی طی انبار داری

نویسندگان
1 عضو هیات علمی گروه صنایع غذایی دانشگاه بوعلی سینا
2 دانشگاه آزاد سنندج
چکیده
تاثیر ترکیبی استفاده از فراصوت با شدت 400 وات و فرکانس 24 کیلوهرتز (4 و 12 دقیقه) به همراه بکارگیری بسته بندی‌های ضد‌میکروبی ساخته شده از پلی اتیلن سبک حاوی نانو‌ذرات اکسید‌روی (3 درصد وزنی-وزنی) شامل تیمار‌های، 4 دقیقه تیمار فراصوت و بسته بندی پلی اتیلنی خالص، 12 دقیقه تیمار فراصوت و بسته بندی پلی اتیلنی خالص، 4 دقیقه تیمار فراصوت و بسته بندی ضدمیکروبی نانو ساختار، 12 دقیقه تیمار فراصوت و بسته بندی ضد میکروبی نانو‌ساختار و بسته بندی پلی اتیلنی خالص (شاهد)، بر میزان غیر فعال‌سازی ساکارومایسز سرویزیه (شاخص فساد) و اشرشیا کلی ( شاخص بیماری زایی) تلقیح شده در آب توت فرنگی در دمای 4 درجه سانتی گراد و طی 4، 8، 12، 16 و 20 روز انبارداری بررسی گردید. تیمار فراصوت (در هر دو زمان 4 و 12 دقیقه) تاثیر معنی‌داری بر کاهش جمعیت ساکارومایسز سرویزیه و اشرشیاکلی داشت (p < 0.05). همچنین مقاومت ساکاروومایسز سرویزیه بر اساس (D value)، نسبت به نمونه‌های فاقد تیمار فراصوت به امواج فراصوت در مقایسه با اشرشیاکلی درمحیط آب توت فرنگی بیشتر بود. استفاده از تیمار 12 دقیقه فراصوت و بسته بندی ضد میکروبی نانو ساختار بیشترین کاهش را در جمعیت ساکارومایسز سرویزیه و اشرشیاکلی تلقیح شده در آب توت فرنگی طی 20 روز انبارداری در مقایسه با سایر تیمار‌ها و نمونه شاهد نشان داد (p < 0.05). استفاده از بسته بندی‌ها‌‌‌‌­­­­­‌‌­‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌ی ضدمیکروبی حاوی نانوذرات اکسید روی به عنوان یک هردل پس از تیمار فراصوت کوتاه مدت به عنوان هردل دوم اثر هم افزایی مناسبی در به تاخیر انداختن رشد میکروارگانیسم‌ها در آب توت فرنگی طی نگهداری در دمای 4 درجه سانتی گراد داشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Influence of sonication and antimicrobial packaging-based nano-ZnO on inactivation of S. cerevisiae and E. coli in strawberry juice during storage

نویسندگان English

aryou emamifar 1
Mehri Mohamadizadeh 2
1 Department of Food Sciences and Technology, Bu-Ali Sina University, Hamedan, Iran
2 Department of Food Science and Technology, Azad University of Kurdistan, Iran
چکیده English

The beneficial impact of coupling sonication with 400 W and 24 kHz (4, and 8 min) with LDPE antimicrobial nanocomposite packaging containing nano-ZnO (3:100 w/w) (Pure packaging + US 4, Pure packaging + US 12, Nano packaging + US 4, Nano Packaging + US 12, and Pure packaging (Control)) on inactivation of inoculated saccharomyces cerevisiae (spoilage index) and E.coli (pathogen index) in strawberry juices during 4, 8, 12, 16., and 20 days (4 °C), was evaluated. Ultrasound technology (both 4 and 12 min) significantly (p < 0.05) reduced the population of saccharomyces cerevisiae and E.coli. Also, the D-value of S. cerevisiae was higher than E. coli in strawberry juice indicating its higher resistance to sonication. Application of Nano Packaging + US 12 showed the highest-ranked antimicrobial activity to the other sample and control on the population of the both S. cerevisiae and E. coli inoculated in strawberry juice during 20 days of storage. These achievements paved the way for hurdle technology applications involving combination of antimicrobial packaging containing nano-ZnO with short time sonication in retarding of microbial growth in strawberry juice during cold storage (4 °C).


کلیدواژه‌ها English

Strawberry juice
Sonication
antimicrobial packaging
nano ZnO
[1] Antonio-Gutiérrez, O., López-Malo, A., Ramírez-Corona, N., & Palou, E. (2017). Enhancement of UVC-light treatment of tangerine and grapefruit juices through ultrasonic atomization. Innovative Food Science and Emerging Technologies, 39, 7-12.
[2] Odriozola-Serrano, I., Puigpinos, J., Oliu, G. O., & Herrero, E. (2016). Antioxidant activity of thermal or non-thermally treated strawberry and mango juices by Saccharomyces cerevisiae growth-based assays. LWT - Food Science and Technology, 74, 55-61.
[3] Raybaudi‐Massilia, R., M., Mosqueda-Melgar, J., Soliva‐Fortuny, R., & Martín‐Belloso, O. (2009). Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comprehensive Reviews in Food Science and Food Safety, 8, 157-180.
[4] Tournas, V. H., Heeres, J., & Burgess, L. (2006). Moulds and yeasts in fruit salads and fruit juices. Food Microbiology, 23, 684–688.
[5] Aneja, K. R., Dhiman, R., Aggarwal, N. K., Kumar, V., & Kaur, M. (2014). Microbes associated with freshly prepared juices of citrus and carrots. International Journal of Food Science, Article ID 408085.
[6] Yildiz, S., Pokhrel, P. R., Unluturk, S., & Barbosa-Cánovas, G. V. (2019). Identification of equivalent processing conditions for pasteurization of strawberry juice by high pressure, ultrasound, and pulsed electric fields processing. Innovative Food Science and Emerging Technologies, 57, 102195.
[7] Loredo, A. B. G., Guerrero, S. N., & Alzamora, S. M. (2015). Inactivation kinetics and growth dynamics during cold storage of Escherichia coli ATCC 11229, Listeria innocua ATCC 33090 and Saccharomyces cerevisiae KE162 in peach juice using aqueous ozone. Innovative Food Science and Emerging Technologies, 29, 271–279.
[8] Aneja, K. R., Dhiman, R., Aggarwal, N. K., & Aneja, A. (2014). Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. International Journal of Food Science, Article ID 758942.
[9] Cruz-Cansino, N., S., Reyes-Hernández, I., Delgado-Olivares, L., Jaramillo-Bustos, D. P., Ariza-Ortega, J. A., & Ramírez-Moreno, E. (2016). Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage. Brazilian Journal of Microbiology, 4 7, 431–437.
[10] Soria, A. C., &Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity
of food: a review. Trends in Food Science and Technology, 21(7), 323-331.
[11] Soltani Firouz, M., Farahmandi, A., & Hosseinpour, S. (2019). Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review.
Ultrasonics – Sonochemistry, 57, 73–88.
[12] Gao, S., Lewis, G. D., Ashokkumar, M., & Hemar, Y. (2014). Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism. Ultrasonics Sonochemistry, 21, 454–460.
[13] Drakopoulou, S., Terzakis, S., Fountoulakis, M. S., Mantzavinos, D., & Manios, T. (2009). Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal waste water. Ultrasonics -Sonochemistry, 16, 629–634.
[14] Valero, M., Recrosio, N., Saura, D., Munoz, N., Martıc, N. & Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80, 509–516.
[15] Tomadoni, B., Cassani, L., Viacava, G., Moreira, M. R, & Ponce, A. (2017). Effect of ultrasound and storage time on quality of strawberry juice. Journal of Food Processing Engineering, 4(5), e12533.
[16] Cheng, L. H., Soh, C. Y., Liew, S. C., & Teh, F. F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104, 1396–1401.
[17] Nguyen, C. L., & Nguyen, H. V. H. (2018). Ultrasonic effects on the quality of mulberry juice. Beverages, 4. 56, 4030056.
[18] Khan, I., Tango, C.N., Miskeen ,S., Lee, B. H., & Oh, D.H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety – A review. Food Control, 73, 1426–1444.
[19] Fakhri, L. A., Ghanbarzadeh, B., Dehghannya, J., Abbasi, F., & Ranjbar, H. (2018). Optimization of mechanical and color properties of polystyrene/nanoclay/nano-ZnO based nanocomposite packaging sheet using response surface methodology. Food Packaging and Shelf life, 17, 11-24.
[20] Jin, T., Sun, D., Su, J. Y., Zhang, H., & Sue, H. J. (2009). Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. Journal of Food Science, 74, 46-52.
[21] Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science and Emerging Technologies, 11, 742–748.
[22] Polat, S., Fenercioglu, H., Unal Turhan, E., & Guclu, M. (2018). Effects of nanoparticle ratio on structural, migration properties of polypropylene films and preservation quality of lemon juice. Journal of Food Processing and Preservation, 42, e13541.
[23] Emamifar, A., & Mohamadizadeh, M. (2015). Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technology and Biotechnology, 53, 488-495.
[24] Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22, 408–413.
[25] Ferrario, M., Alzamora, S. M., & Guerrero, S. (2013). Inactivation kinetics of some microorganisms in apple, melon, orange and strawberry juices by high intensity light pulses. Journal of Food Engineering, 118, 302–311.
[26] AOAC. (2002). Solids (Soluble) in Fruits and Fruit Product: Refractometer Method. Gaithersburg, MD: Official Methods of Analysis of AOAC International, Official Method 932.12.
[27] AOAC. (2002). Acidity (Titratable) of Fruit Products. Gaithersburg, MD: Official Methods of Analysis of AOAC International, Official Method 942.15.
[28] Alighourchi, H. R., Barzegar, M., Sahari, M. A., & Abbasi, S. (2014). Evaluation of Escherichia coli and Saccharomyces cerevisiae inactivation in sonicated pomegranate juice. Food Science and Technology, 11, 23-33.
[29] Adekunte, O., Tiwari, B. K.,.Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2009). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122, 500-507.
[30] Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., & Maebayashi, M. (2009). Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. Ultrasonics-Sonochemistry, 16, 655–659.
[31] Sesal, N. C., & Kekeç, Ö. (2014). Inactivation of Escherichia coli and Staphylococcus aureus by ultrasound. J journal of Ultrasound in Medicine, 33, 1663-1668.
[32] Nadeem, M., Ubaid, N., Qureshi, T. M., Munir, M., & Mehmood, A. (2018). Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrasonics – Sonochemistry, 45, 1-6.
[33] Lopez-Malo, A., Guerrero, S., & Alzamora, S. M. (1999). Saccharomyces cerevisiae, thermal inactivation kinetics combined with ultrasound. Journal of Food Protection, 62, 1215–1217.
[34] Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Saeeduddin, M., & Zeng, X. (2015). Qualitative assessment of sonicated apple juice during storage. Journal of Food Processing and Preservation, 39, 1299-1308.
[35] Sawai, J., Yoshikawa, T. (2004). Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. Journal of Applied Microbiology, 96(4), 803–809.
[36] Patil, S., Valdramidis, V. P., Tiwari, B. K., Cullen, P. J., Bourke, P. (2011). Quantitative assessment of the shelf life of ozonated apple juice. European Journal of Food Research and Technology, 232, 469–477.