امکان‌سنجی کاربرد روش غیرمخرب طیف‌سنجی فروسرخ نزدیک و مدلسازی PLSR در تخمین پروتئین و رطوبت دانه‌های گندم و پهنه‌بندی نقشه کیفی مزارع

نویسندگان
1 دانش آموخته کارشناسی ارشد مهندسی مکانیک بیوسیستم، دانشگاه بوعلی سینا، همدان
2 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان
3 استادیار ، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان
چکیده
پروتئین گندم یکی از شاخص‌های اصلی کیفی محصول بوده و نقش ویژه‌ای در فرآوری این محصول ایفا می‌کند. با توجه به فرآوری محصولات متنوع از گندم، اندازه‌گیری سریع یا برخط کیفی محصول در کنترل فرآیندهای تولید آرد یا انتخاب رقم بسیار مهم می‌باشد. از طرفی در مفهوم جدید کشاورزی دقیق، با اندازهگیری مستقیم پروتئین و یا رطوبت محصول بر روی کمباین و تهیه نقشه عملکرد کیفی مزرعه، می‌توان وضعیت مزرعه در نقاط مختلف و یا مقایسه مزارع با همدیگر را نیز ارزیابی کرد. بنابراین هدف اصلی این پژوهش، ارزیابی روش­ غیر‌مخرب طیف‌سنجی فروسرخ نزدیک حالت بازتابی جهت پیش­بینی متغیر پروتئین و رطوبت دانه‌های سالم گندم است. دراین تحقیق 108 نمونه سالم گندم از سه رقم میهن، پیشگام و گاسکوژن در مرحله قبل از برداشت از مزارع روستای کرفس در استان همدان تهیه شدند. طیف­گیری از نمونه­ها به روش بازتابی و در بازه طیفی 1650-950 نانومتر و قدرت تفکیک 5 نانومتر انجام گردید. نتایج نشان داد که بهترین مدل با استفاده از روش PLSR و پیش­پردازش ترکیبی SG+SNV+D1 و MA+D2+SNV به ترتیب برای پروتئین و رطوبت بدست آمد. مقادیر ضریب رگرسیون (R2RMSE و SDR داده­های اعتبار‌سنجی یا تست به ترتیب برابر با 84/0، 83/0 و 54/2 برای تخمین پروتئین و 96/0، 994/0 و 34/5 برای تخمین رطوبت حاصل شد. نتایج نشان داد که هر چند تفاوت معنی‌داری بین میانگین پروتئین رقم‌ها یافت نگردید، ولی اختلاف آماری معنی‌داری در سطح 5 درصد بین نقاط مختلف مزارع بدست آمد. نتایج نشان داد که روش طیف‌سنجی فروسرخ نزدیک و مدل PLSR روشی کارآمد و دارای پتانسیل قوی برای تشخیص سریع پارامتر­های پروتئین و رطوبت دانههای گندم می‌باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Feasibility of Using NIR and PLSR Model for Prediction of Wheat Grains protein and moisture content and Mapping Quality Yield Map

نویسندگان English

Behnam Foroozani 1
hossein bagherpour 2
khalil zaboli 3
1 MSc, graduated student, Department of Biosystems Engineering, Bu-Ali Sina University, Hamedan, Iran
2 Assistant Professor, Department of Biosystems Engineering, Bu-Ali Sina University, Hamedan, Iran
3 Assistant Professor, Department of Animal Science, Bu-Ali Sina University, Hamedan, Iran
چکیده English

Protein as an important ingredient in wheat plays main role in the production of wheat’s products. Because of the production of various products from wheat, fast and online measuring of wheat grain quality is very important to control of flour production process and choosing an appropriate variety. Also in precision farming, combination of quantity and quality maps lets farmers to evaluate and control the plant production, well. Therefore, the purpose of this study was to evaluate the use of infrared spectroscopy in reflectance mode to predict protein and moisture content of wheat grain. In this study about 108 samples were collected from three varieties namely Mihan, Gazkojhen and Pishgam in the region near Hamedan province in Iran. Grain proteins content were measured with a DA7200 near infrared spectroscopy apparatus. This spectroscopy collects reflectance over a wavelength range of 650-1650 nm in 5 nm increments. Results show that the best models were obtained using the PLSR method and its preprocessing SG+SNV+D1 and MA+D2+SNV for protein and moisture content, respectively. The correlation coefficient (R2), root mean square error of prediction (RMSEP) and Standard Deviation Ratio (SDR) were obtained 0.84, 0.835 and 2.54 for protein content, whereas 0.96, 0.994 and 5.34 for moisture content, respectively. Results showed that there are no significant differences among proteins of three varieties. But the sampling places have a significant effect on the protein content at the significant level of 5%. These results indicated that the infrared spectroscopy method is an efficient method and has a strong potential for rapid detection of protein and moisture content of wheat grains

کلیدواژه‌ها English

Non-destructive methods
Wheat
Near infrared
Protein
[1] Anonymous. 2018. Food and Agricultural Organization of United Nation. Available in: www.fao.org. (Accessed January 2018).
[2] Bahraei, S. 2003. Bread wheat quality evaluation based on the high molecular weight glutenin subunits. Iranian Journal of Crop Science. 5(3): p.204-215.
[3] Bagherpour, H., S. Minaei and Abdollahian Noghabi, M. 2014. Non-destructive determination of sugar content in root beet by near infrared spectroscopy (NIRS). Journal of Food Science and Technology, 6(1): p.13-22.
[4] Jha, S. N. and Matsuoka, T. 2000. Non-destructive techniques for quality evaluation of intact fruits and vegetables. Food Science and Technology Research. 6(4): p.248-251.
[5] Cen, H. and He, Y. 2007. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science and Technology. 18(2): p.72-83.
[6] Mao, X., Sun, L., Hui, G., and Xu, L. 2014. Modeling research on wheat protein content measurement using near-infrared reflectance spectroscopy and optimized radial basis function neural network. Journal of food and drug analysis, 22(2): p.230-235.
[7] Chen, H., Sun, Y., Wortmann, A., Gu, H., and Zenobi, R. 2007. Differentiation of maturity and quality of fruit using noninvasive extractive electrospray ionization quadrupole time-of-flight mass spectrometry. 79(4): p.1447-1455.
[8] Mutlu, A.C., Boyaci, I.H., Genis, H.E., Ozturk, R., Basaran-Akgul, N., Sanal, T. and Evlice, A.K. 2011. Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks. European food research and technology. 233(2): p.267-274.
[9] Hong, J.-H., K. Ikeda, I. Kreft and Yasumoto, K. 1996. Near-infrared diffuse reflectance spectroscopic analysis of the amounts of moisture, protein, starch, amylose, and tannin in buckwheat flours. Journal of nutritional science and vitaminology. 42(4): p.359-366.
[10] Kays, S. E., F. E., Barton and Windham, W. R. 2000. Predicting protein content by near infrared reflectance spectroscopy in diverse cereal food products. Journal of Near Infrared Spectroscopy. 8(1): p.35-43.
[11] Delwiche, S. 1995. Main content area Single wheat kernel analysis by near-infrared transmittance: protein content. Cereal chemistry. 72(1): p.11-16.
[12] Osborne, B. G. and Fearn, T. 1983. Collaborative evaluation of near infrared reflectance analysis for the determination of protein, moisture and hardness in wheat. Journal of the Science of Food and Agriculture. 34(9): p.1011-1017.
[13] Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., and Lammertyn, J. 2007. “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review”. Postharvest Biology and Technology, 46(2): p. 99–118.
[14] Kovalenko, I. V., Rippke, G. R., and Hurburgh, C. R. 2006. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. Journal of Agricultural and Food Chemistry. 54(10): p.3485-3491.
[15] Liu, Y., Sun, X., Zhou, J., Zhang, H., and Yang, C. 2010. Linear and nonlinear multivariate regressions for determination sugar content of intact Gannan navel orange by Vis–NIR diffuse reflectance spectroscopy. Mathematical and Computer Modeling. 51(11-12): 1438-1443
[16] Long, D.S., Engel, R.E. and Siemens, M.C., 2008. Measuring grain protein concentration with in-line near infrared reflectance spectroscopy. Agronomy Journal, 100(2), p.247-252.
[17] Caporaso, N., Whitworth, M. B., and Fisk, I. D. 2018. Protein content prediction in single wheat kernels using hyperspectral imaging. Food chemistry. 240(1): p.32-42.