استخراج پنتوزان‌ها از سبوس گندم با استفاده از روش‌های متداول و ترکیبی

نویسندگان
1 گروه علوم و صنایع غذایی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران
2 Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
3 بخش علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران
چکیده
سبوس، محصول جانبی فرایند آسیاب گندم، دارای ترکیبات مختلف از جمله پنتوزان‌ها می‌باشد که این ترکیب می‌تواند برای افزایش خواص سلامت‌بخش و عملکردی محصولات غذایی کاربردهای صنعتی پیدا کند. در این تحقیق ابتدا بازدهی استخراج پنتوزان از سبوس گندم با استفاده از آب داغ 80 درجه سلسیوس، هیدروکسید سدیم 0.01 میلی‌مولار و پراکسید هیدروژن قلیایی 2 درصد به عنوان روش‌های مرسوم استخراج بررسی گردید. سپس، تاثیر پیش‌تیمارهایی از قبیل آنزیم سلولاز، فراصوت، اتوکلاو و مایکروویو در حضور هیدروکسید سدیم و آب بر افزایش بازدهی استخراج مطالعه شد. در نهایت به منظور افزایش بازده استخراج پنتوزان‌ها، تیمارهای مراحل قبل با بالاترین درجه استخراج (فراصوت، آنزیم سلولاز، آب داغ، هیدروکسید سدیم و پراکسید هیدروژن) به صورت تیمارهای ترکیبی ارزیابی شدند. نتایج نشان داد که خلوص پنتوزان‌های استخراج شده با هیدروکسید سدیم به صورت معنی‌داری بیشتر از آب داغ و پراکسید هیدروژن بود (p< 0.05). همچنین، از میان پیش‌تیمارهای آنزیم سلولاز، امواج فراصوت، اتوکلاو و مایکروویو در حضور آب یا هیدروکسید سدیم، بیشترین میزان بازده استخراج پنتوزان‌ها به ترتیب در تیمار ترکیبی آنزیم+هیدروکسید سدیم و فراصوت+هیدروکسید سدیم مشاهده شد. تیمار ترکیبی آب داغ 80 درجه سلسیوس، آنزیم سلولاز 0.1 درصد و توان فراصوت 560 وات به مدت 2 دقیقه و تیمار ترکیبی آب داغ 80 درجه سلسیوس و پراکسید هیدروژن 4 درصد با pH=11.5 به ترتیب به عنوان بهترین عوامل ترکیبی در افرایش بازده استخراج و خلوص پنتوزان از سبوس گندم شناخته شدند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Extraction of pentosans from wheat bran by conventional and combined methods

نویسندگان English

Mina Emamiyan 1
رادی Radi 1
Sedigheh Amiri 2
Hamidreza Akhavan 3
1 Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
2 گروه علوم و صنایع غذایی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران
3 Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده English

Wheat bran as a by-product of milling contain various compounds such as pentosans which have health promoting effects and functinal properties in industrial applications. In this study the extraction yield of pentosans by hot water 80oC, 0.01 mM sodium hydroxide and 2% alkaline hydrogen peroxide solutions as the conventional methods for pentosan extraction was evaluated. Then, the effects of pretreatments such as cellulase, ultrasound, autoclave and microwave in the presence of sodium hydroxide and water to increase the pentosan extraction yield were studied. Finally, in order to increase the extraction yield of the pentosans, pretreatments with the highest extraction yield (sonication, cellulase enzyme, hot water, sodium hydroxide, hydrogen peroxide) were evaluated as combined treatments. The results showed that the purity of pentosans extracted with sodium hydroxide was significantly higher than the hot water and hydrogen peroxide solution (p<0.05). Also, among the pretreatments of cellulase enzyme, ultrasound, autoclave and microwave in presence of water or sodium hydroxide, the combination of cellulase-sodium hydroxide and ultrasound-sodium hydroxide treatments resulted in the higher yields. The combined treatment of hot water (80oC)+cellulase enzyme+(0.1%)+ultrasound power (560 w, 2 minutes) and the combined treatment of hot water (80oC)+hydrogen peroxide (4%, pH=11.5) were identified respectively as the best combination factors to maximize extraction yield and pentosans purity from wheat bran.

کلیدواژه‌ها English

Extraction optimization
Cellulase enzyme
Ultrasound
Autoclave
Microwave
Pentosan
Extraction yield
[1] Javed, M. M., Zahoor, S., Shafaat, S., Mehmooda, I., Gul, A., Rasheed, H., Bukhari, S. A. I., and Aftab, M.N. 2012. Wheat bran as a brown gold: Nutritious value and its biotechnological applications. African Journal of Microbiology Research, 6(4): 724-733.
[2] Wang, J., Sun, B., Liu, Y., and Zhang, H. 2014. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chemistry, 150: 482-488.
[3] Zhou, S., Liu, X., Guo, Y., Wang, Q., Peng, D., and Cao, L. 2010. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydrate Polymers, 81(4): 784-789.
[4] Zhang, Z., Smith, C., and Li, W. 2014. Extraction and modification technology of arabinoxylans from cereal by-products: a critical review. Food Research International, 65: 423-436.
[5] Mansberger, A., D'Amico, S., Novalin, S., Schmidt, J., Tomoskozi, S., Berghofer, E., and Schoenlechner, R. 2014. Pentosan extraction from rye bran on pilot scale for application in gluten-free products. Food Hydrocolloids, 35: 606-612.
[6] Hoseney, R., and Faubion, J. 1981. A mechanism for the oxidative gelation of wheat flour water-soluble pentosans. Cereal Chemistry, 58(5): 421-424.
[7] Hartmann, G., Piber, M., and Koehler, P. 2005. Isolation and chemical characterisation of water-extractable arabinoxylans from wheat and rye during breadmaking. European Food Research and Technology, 221(3-4): 487-492.
[8] Izydorczyk, M. S., and Dexter, J. E. 2008. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Research International, 41(9): 850-868.
[9] Escarnot, E., Aguedo, M., and Paquot, M. 2011. Characterization of hemicellulosic fractions from spelt hull extracted by different methods. Carbohydrate Polymers, 85(2): 419-428.
[10] Bergmans, M., Beldman, G., Gruppen, H., and Voragen, A. 1996. Optimisation of the selective extraction of (glucurono) arabinoxylans from wheat bran: use of barium and calcium hydroxide solution at elevated temperatures. Journal of Cereal Science, 23(3): 235-245.
[11] Maes, C., and Delcour, J. 2001. Alkaline hydrogen peroxide extraction of wheat bran non-starch polysaccharides. Journal of Cereal Science, 34(1): 29-35.
[12] Gong, L., Jin, C., Wu, X., and Zhang, Y. 2012. Determination of arabinoxylans in Tibetan Hull-less barley bran. Procedia Engineering, 37: 218-222.
[13] Ebringerova, A., and Hromadkova, Z. 2002. Effect of ultrasound on the extractibility of corn bran hemicelluloses. Ultrasonics Sonochemistry, 9(4): 225-229.
[14] Rakha, A., Aman, P., and Andersson, R. 2010. Characterisation of dietary fibre components in rye products. Food Chemistry, 119(3): 859-867.
[15] Kale, M. S., Hamaker, B. R., and Campanella, O. H. 2013. Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. Food Hydrocolloids, 31(1): 121-126.
[16] Escarnot, E., Aguedo, M., Agneessens, R., Wathelet, B., and Paquot, M. 2011. Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. Journal of Cereal Science, 53(1): 45-52.
[17] Hollmann, J., Elbegzaya, N., Pawelzik, E., and Lindhauer, M. G. 2009. Isolation and characterization of glucuronoarabinoxylans from wheat bran obtained by classical and ultrasound‐assisted extraction methods. Quality Assurance and Safety of Crops and Foods, 1(4): 231-239.
[18] Aguedo, M., Fougnies, C., Dermience, M., and Richel, A. 2014. Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained. Carbohydrate polymers, 105: 317-324.
[19] Hromadkova, Z., Kostalova, Z., and Ebringerova, A. 2008. Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochemistry, 15(6): 1062-1068.
[20] Shirsath, S., Sonawane, S., and Gogate, P. 2012. Intensification of extraction of natural products using ultrasonic irradiations-A review of current status. Chemical Engineering and Processing: Process Intensification, 53: 10-23.
[21] Sun, Y., Cui, S.W., Gu, X., and Zhang, J. 2011. Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran. Carbohydrate Polymers, 85(3): 615-621.
[22] Panthapulakkal, S., and Sain, M. 2013. Optimization of microwave assisted alkaline extraction of xylan from birch wood using response surface methodology. Journal of Materials Science and Chemical Engineering, 1(06): 38-50.
[23] Yoshida, T., Tsubaki, S., Teramoto, Y., and Azuma, J. I. 2010. Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology. Bioresource Technology, 101(20): 7820-7826.
[24] Wang, T. H., and Lu, S. 2013. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis. Food Chemistry, 138(2-3): 1531-1535.
[25] Shengdong, Z., Ziniu, Y., Yuanxin, W., Xia, Z., Hui, L., and Ming, G. 2005. Enhancing enzymatic hydrolysis of rice straw by microwave pretreatment. Chemical Engineering Communications, 192(12): 1559-1566.
[26] Jiang, Y., Bai, X., Lang, S., Zhao, Y., Liu, C., and Yu, L. 2019. Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology. International Journal of Biological Macromolecules, 128: 452-458.
[27] Hollmann, J., and Lindhauer, M. 2005. Pilot-scale isolation of glucuronoarabinoxylans from wheat bran. Carbohydrate Polymers, 59(2): 225-230.
[28] Saghir, S., Iqbal, M. S., Hussain, M. A., Koschella, A., and Heinze, T. 2008. Structure characterization and carboxymethylation of arabinoxylan isolated from Ispaghula (Plantago ovata) seed husk. Carbohydrate Polymers, 74(2): 309-317.