[1] Javed, M. M., Zahoor, S., Shafaat, S., Mehmooda, I., Gul, A., Rasheed, H., Bukhari, S. A. I., and Aftab, M.N. 2012. Wheat bran as a brown gold: Nutritious value and its biotechnological applications. African Journal of Microbiology Research, 6(4): 724-733.
[2] Wang, J., Sun, B., Liu, Y., and Zhang, H. 2014. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chemistry, 150: 482-488.
[3] Zhou, S., Liu, X., Guo, Y., Wang, Q., Peng, D., and Cao, L. 2010. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydrate Polymers, 81(4): 784-789.
[4] Zhang, Z., Smith, C., and Li, W. 2014. Extraction and modification technology of arabinoxylans from cereal by-products: a critical review. Food Research International, 65: 423-436.
[5] Mansberger, A., D'Amico, S., Novalin, S., Schmidt, J., Tomoskozi, S., Berghofer, E., and Schoenlechner, R. 2014. Pentosan extraction from rye bran on pilot scale for application in gluten-free products. Food Hydrocolloids, 35: 606-612.
[6] Hoseney, R., and Faubion, J. 1981. A mechanism for the oxidative gelation of wheat flour water-soluble pentosans. Cereal Chemistry, 58(5): 421-424.
[7] Hartmann, G., Piber, M., and Koehler, P. 2005. Isolation and chemical characterisation of water-extractable arabinoxylans from wheat and rye during breadmaking. European Food Research and Technology, 221(3-4): 487-492.
[8] Izydorczyk, M. S., and Dexter, J. E. 2008. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Research International, 41(9): 850-868.
[9] Escarnot, E., Aguedo, M., and Paquot, M. 2011. Characterization of hemicellulosic fractions from spelt hull extracted by different methods. Carbohydrate Polymers, 85(2): 419-428.
[10] Bergmans, M., Beldman, G., Gruppen, H., and Voragen, A. 1996. Optimisation of the selective extraction of (glucurono) arabinoxylans from wheat bran: use of barium and calcium hydroxide solution at elevated temperatures. Journal of Cereal Science, 23(3): 235-245.
[11] Maes, C., and Delcour, J. 2001. Alkaline hydrogen peroxide extraction of wheat bran non-starch polysaccharides. Journal of Cereal Science, 34(1): 29-35.
[12] Gong, L., Jin, C., Wu, X., and Zhang, Y. 2012. Determination of arabinoxylans in Tibetan Hull-less barley bran. Procedia Engineering, 37: 218-222.
[13] Ebringerova, A., and Hromadkova, Z. 2002. Effect of ultrasound on the extractibility of corn bran hemicelluloses. Ultrasonics Sonochemistry, 9(4): 225-229.
[14] Rakha, A., Aman, P., and Andersson, R. 2010. Characterisation of dietary fibre components in rye products. Food Chemistry, 119(3): 859-867.
[15] Kale, M. S., Hamaker, B. R., and Campanella, O. H. 2013. Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. Food Hydrocolloids, 31(1): 121-126.
[16] Escarnot, E., Aguedo, M., Agneessens, R., Wathelet, B., and Paquot, M. 2011. Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. Journal of Cereal Science, 53(1): 45-52.
[17] Hollmann, J., Elbegzaya, N., Pawelzik, E., and Lindhauer, M. G. 2009. Isolation and characterization of glucuronoarabinoxylans from wheat bran obtained by classical and ultrasound‐assisted extraction methods. Quality Assurance and Safety of Crops and Foods, 1(4): 231-239.
[18] Aguedo, M., Fougnies, C., Dermience, M., and Richel, A. 2014. Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained. Carbohydrate polymers, 105: 317-324.
[19] Hromadkova, Z., Kostalova, Z., and Ebringerova, A. 2008. Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochemistry, 15(6): 1062-1068.
[20] Shirsath, S., Sonawane, S., and Gogate, P. 2012. Intensification of extraction of natural products using ultrasonic irradiations-A review of current status. Chemical Engineering and Processing: Process Intensification, 53: 10-23.
[21] Sun, Y., Cui, S.W., Gu, X., and Zhang, J. 2011. Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran. Carbohydrate Polymers, 85(3): 615-621.
[22] Panthapulakkal, S., and Sain, M. 2013. Optimization of microwave assisted alkaline extraction of xylan from birch wood using response surface methodology. Journal of Materials Science and Chemical Engineering, 1(06): 38-50.
[23] Yoshida, T., Tsubaki, S., Teramoto, Y., and Azuma, J. I. 2010. Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology. Bioresource Technology, 101(20): 7820-7826.
[24] Wang, T. H., and Lu, S. 2013. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis. Food Chemistry, 138(2-3): 1531-1535.
[25] Shengdong, Z., Ziniu, Y., Yuanxin, W., Xia, Z., Hui, L., and Ming, G. 2005. Enhancing enzymatic hydrolysis of rice straw by microwave pretreatment. Chemical Engineering Communications, 192(12): 1559-1566.
[26] Jiang, Y., Bai, X., Lang, S., Zhao, Y., Liu, C., and Yu, L. 2019. Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology. International Journal of Biological Macromolecules, 128: 452-458.
[27] Hollmann, J., and Lindhauer, M. 2005. Pilot-scale isolation of glucuronoarabinoxylans from wheat bran. Carbohydrate Polymers, 59(2): 225-230.
[28] Saghir, S., Iqbal, M. S., Hussain, M. A., Koschella, A., and Heinze, T. 2008. Structure characterization and carboxymethylation of arabinoxylan isolated from Ispaghula (Plantago ovata) seed husk. Carbohydrate Polymers, 74(2): 309-317.