[1] R. Japón-Luján, M.L. de Castro, Superheated liquid extraction of oleuropein and related biophenols from olive leaves, Journal of Chromatography A, 1136 (2006) 185-191.
[2] I. Katouzian, S.M. Jafari, Protein nanotubes as state-of-the-art nanocarriers: Synthesis methods, simulation and applications, Journal of Controlled Release, (2019).
[3] I. Katouzian, S.M. Jafari, Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins, Trends in Food Science & Technology, 53 (2016) 34-48.
[4] L.G. Mendoza-Sánchez, M. Jiménez-Fernández, G. Melgar-Lalanne, G.F. Gutiérrez-López, A.s. Hernández-Arana, F. Reyes-Espinosa, H. Hernández-Sánchez, Chemical Lipophilization of Bovine α-Lactalbumin with Saturated Fatty Acyl Residues: Effect on Structure and Functional Properties, Journal of agricultural and food chemistry, 67 (2019) 3256-3265.
[5] D.K. Layman, B. Lönnerdal, J.D. Fernstrom, Applications for α-lactalbumin in human nutrition, Nutrition reviews, 76 (2018) 444-460.
[6] Y. Delgado, M. Morales-Cruz, C.M. Figueroa, J. Hernández-Román, G. Hernández, K. Griebenow, The cytotoxicity of BAMLET complexes is due to oleic acid and independent of the α-lactalbumin component, FEBS open bio, 5 (2015) 397-404.
[7] A. Al-Hanish, D. Stanic-Vucinic, J. Mihailovic, I. Prodic, S. Minic, M. Stojadinovic, M. Radibratovic, M. Milcic, T.C. Velickovic, Noncovalent interactions of bovine α-lactalbumin with green tea polyphenol, epigalocatechin-3-gallate, Food Hydrocolloids, 61 (2016) 241-250.
[8] F. Mohammadi, M. Moeeni, Analysis of binding interaction of genistein and kaempferol with bovine α-lactalbumin, Journal of functional foods, 12 (2015) 458-467.
[9] H. Bi, L. Tang, X. Gao, J. Jia, H. Lv, Spectroscopic analysis on the binding interaction between tetracycline hydrochloride and bovine proteins β-casein, α-lactalbumin, Journal of Luminescence, 178 (2016) 72-83.
[10] H. Cheng, Z. Fang, A.M. Bakry, Y. Chen, L. Liang, Complexation of trans-and cis-resveratrol with bovine serum albumin, β-lactoglobulin or α-lactalbumin, Food hydrocolloids, 81 (2018) 242-252.
[11] B. Delavari, A.A. Saboury, M.S. Atri, A. Ghasemi, B. Bigdeli, A. Khammari, P. Maghami, A.A. Moosavi-Movahedi, T. Haertlé, B. Goliaei, Alpha-lactalbumin: A new carrier for vitamin D3 food enrichment, Food Hydrocolloids, 45 (2015) 124-131.
[12] J.R. Lakowicz, Principles of fluorescence spectroscopy, Springer Science & Business Media2013.
[13] M. Dasgupta, N. Kishore, Characterization and analysis of binding of Thioflavin T with partially folded and native states of α–lactalbumin protein by calorimetric and spectroscopic techniques, International journal of biological macromolecules, 95 (2017) 376-384.
[14] A. Shah, E. Nosheen, S. Munir, A. Badshah, R. Qureshi, N. Muhammad, H. Hussain, Characterization and DNA binding studies of unexplored imidazolidines by electronic absorption spectroscopy and cyclic voltammetry, Journal of Photochemistry and Photobiology B: Biology, 120 (2013) 90-97.
[15] M. Mohamadi, D. Afzali, S. Esmaeili-Mahani, A. Mostafavi, M. Torkzadeh-Mahani, Spectroscopic and electrochemical studies of the interaction between oleuropein, the major bio-phenol in olives, and salmon sperm DNA, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148 (2015) 260-265.
[16] J.A. Pradeepkiran, K.K. Kumar, Y.N. Kumar, M. Bhaskar, Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M, Drug design, development and therapy, 9 (2015) 1897.
[17] S.M. Jafari, K. Mahdavee Khazaei, E. Assadpour, Production of a natural color through microwave‐assisted extraction of saffron tepal's anthocyanins, Food science & nutrition, 7 (2019) 1438-1445.
[18] P.D. Adams, Y. Chen, K. Ma, M.G. Zagorski, F.D. Sönnichsen, M.L. McLaughlin, M.D. Barkley, Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides, Journal of the American Chemical Society, 124 (2002) 9278-9286.
[19] M. Jahanshahtalab, M. Kamshad, S. Rezaei, S. Beigoli, A.S. Rad, J. Mehrzad, S.K. Moghadam, P. Mokaberi, S. Gharebaghi, M.R. Saberi, New insights into alpha-lactalbumin behavior upon interaction with resveratrol and curcumin by spectroscopic and molecular modeling techniques: binary and ternary system comparison, Journal of the Iranian Chemical Society, (2019) 1-16.
[20] S.M. Kelly, N.C. Price, The use of circular dichroism in the investigation of protein structure and function, Current protein and peptide science, 1 (2000) 349-384.
[21] G. Asghari, M.S. Atri, A.A. Saboury, M. Mohadjerani, Study of the Interaction of Cinnamaldehyde with Alpha-lactalbumin: Spectroscopic and Molecular Docking Investigation, Biomacromolecular Journal, 3 (2017) 123-132.
[22] M.S. Atri, A.A. Saboury, A.A. Moosavi-Movahedi, K. Kavousi, S. Ariaeenejad, Effects of zinc binding on the structure and thermal stability of camel alpha-lactalbumin, Journal of Thermal Analysis and Calorimetry, 120 (2015) 481-488.
[23] H. Hiramatsu, K. Takeuchi, H. Takeuchi, Involvement of histidine residues in the pH-dependent β-galactoside binding activity of human galectin-1, Biochemistry, 52 (2013) 2371-2380.
[24] A. Okada, T. Miura, H. Takeuchi, Protonation of histidine and histidine− tryptophan interaction in the activation of the M2 ion channel from influenza A virus, Biochemistry, 40 (2001) 6053-6060.
[25] Y. Zhang, Q. Zhong, Binding between bixin and whey protein at pH 7.4 studied by spectroscopy and isothermal titration calorimetry, Journal of agricultural and food chemistry, 60 (2012) 1880-1886.
[26] C. Barbana, M. Perez, C. Pocovi, L. Sanchez, Z. Wehbi, Interaction of human α-lactalbumin with fatty acids: Determination of binding parameters, Biochemistry (Moscow), 73 (2008) 711-716.
[27] B. Delavari, F. Mamashli, B. Bigdeli, A. Poursoleiman, L. Karami, Z. Zolmajd-Haghighi, A. Ghasemi, S. Samaei-Daryan, M. Hosseini, T. Haertlé, A biophysical study on the mechanism of interactions of DOX or PTX with α-lactalbumin as a delivery carrier, Scientific reports, 8 (2018) 17345.
[28] L. Dumitraşcu, F.M. Ursache, N. Stănciuc, I. Aprodu, Studies on binding mechanism between carotenoids from sea buckthorn and thermally treated α-lactalbumin, Journal of Molecular Structure, 1125 (2016) 721-729.
[29] S. David, Y. Zagury, Y.D. Livney, Soy β-conglycinin− curcumin nanocomplexes for enrichment of clear beverages, Food Biophysics, 10 (2015) 195-206.
[30] R.S. Lam, M.T. Nickerson, The effect of pH and temperature pre-treatments on the structure, surface characteristics and emulsifying properties of alpha-lactalbumin, Food chemistry, 173 (2015) 163-170.
[31] M. Miriani, M. Corredig, S. Iametti, F. Bonomi, Denaturation of soy proteins in solution and at the oil–water interface: A fluorescence study, Food Hydrocolloids, 25 (2011) 620-626.
[32] S. Ellepola, C.-Y. Ma, Thermal properties of globulin from rice (Oryza sativa) seeds, Food research international, 39 (2006) 257-264.
[33] Y.V. Griko, Denaturation versus unfolding: energetic aspects of residual structure in denatured α-lactalbumin, Journal of protein chemistry, 18 (1999) 361-369.
[34] E.A. Permyakov, L.J. Berliner, α‐Lactalbumin: structure and function, FEBS letters, 473 (2000) 269-274.
[35] T. Kamijima, A. Ohmura, T. Sato, K. Akimoto, M. Itabashi, M. Mizuguchi, M. Kamiya, T. Kikukawa, T. Aizawa, M. Takahashi, Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death, Biochemical and biophysical research communications, 376 (2008) 211-214.
[36] F. Mohammadi, M. Moeeni, Study on the interactions of trans-resveratrol and curcumin with bovine α-lactalbumin by spectroscopic analysis and molecular docking, Materials Science and Engineering: C, 50 (2015) 358-366.