Comparative Analysis of Biochemical compositions and Quality Attributes of Green Tea and Black Tea from Prominent Bangladeshi Brands

نویسندگان
1 دانشگاه بین المللی اقیانوس آرام شمالی بنگلادش، مانیکگانج، بنگلادش
2 دانشگاه علوم و فناوری حاجی محمد دانش، دیناجپور
3 مدرس، گروه مهندسی صنایع غذایی، دانشگاه بین‌المللی شمال اقیانوس آرام بنگلادش، مانیکگنج، بنگلادش
چکیده
Tea is the most widely consumed non-alcoholic beverage in the world, valued for its economic significance and health benefits, largely attributed to its polyphenolic compounds with potent antioxidant properties. This research aims to assess the chemical composition and quality of green and black tea products available in the Bangladeshi market. Samples were collected from five leading brands of each type: black tea brands included Ispahani, Kazi & Kazi, Jafflong, Halda Valley, and Seylon, while green tea brands comprised Ispahani, Kazi & Kazi, Jafflong, Halda Valley, and Lipton. The analysis focused on proximate compositions, total phenols, flavonoids, DPPH radical scavenging activity, caffeine levels, theaflavins (TF), thearubigins (TR), high polymerized substances (HPS), and total liquor color (TLC). A comparative analysis of green and black tea reveals significant differences in their chemical compositions and potential health benefits. Green tea boasts a higher phenolic content, ranging from 72.94 to 75.68 mg GAE/g, and exhibits greater antioxidant activity, with DPPH (2,2-diphenyl-1-picrylhydrazyl) values between 91.29 to 96.55 ml Trolox/g, compared to black tea, which has phenolic content of 66.21 to 67.32 mg GAE/g and DPPH values of 79.84 to 87.73 ml Trolox/g. Conversely, black tea contains higher levels of caffeine (31.95 to 37.36 ppm), flavonoids (63.70 to 67.78 mg QE/g), and tannins (14.02 to 17.36 mg TAE/g) than green tea, which has caffeine levels of 25.18 to 28.41 ppm, flavonoid content of 27.17 to 37.80 mg QE/g, and tannin content of 5.87 to 7.21 mg TAE/g. The analysis indicates that black tea has higher concentrations of theaflavins, thearubigins, highly polymerized substances, and total liquor color compared to green tea, contributing to its distinctive flavor and appearance.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparative Analysis of Biochemical compositions and Quality Attributes of Green Tea and Black Tea from Prominent Bangladeshi Brands

نویسندگان English

Md. Ashraful Islam 1
Fahriha Nur A Fahriha Nur A 1
Anwara Akter Anwara Akter 2
Tasnim Rahaman Sathi 3
Adrita Afrin 3
Md. Shohel Rana Palleb 3
Nazmul Islam 3
Sourav Biswas Nayana 3
Md. Abdul Halim 3
1 North Pacific International University of Bangladesh, Manikganj, Bangladesh
2 Hajee Mohammad Danesh Science and Technology University, Dinajpur
3 Islamic University, kushtia, Bangladesh
چکیده English

Tea is the most widely consumed non-alcoholic beverage in the world, valued for its economic significance and health benefits, largely attributed to its polyphenolic compounds with potent antioxidant properties. This research aims to assess the chemical composition and quality of green and black tea products available in the Bangladeshi market. Samples were collected from five leading brands of each type: black tea brands included Ispahani, Kazi & Kazi, Jafflong, Halda Valley, and Seylon, while green tea brands comprised Ispahani, Kazi & Kazi, Jafflong, Halda Valley, and Lipton. The analysis focused on proximate compositions, total phenols, flavonoids, DPPH radical scavenging activity, caffeine levels, theaflavins (TF), thearubigins (TR), high polymerized substances (HPS), and total liquor color (TLC). A comparative analysis of green and black tea reveals significant differences in their chemical compositions and potential health benefits. Green tea boasts a higher phenolic content, ranging from 72.94 to 75.68 mg GAE/g, and exhibits greater antioxidant activity, with DPPH (2,2-diphenyl-1-picrylhydrazyl) values between 91.29 to 96.55 ml Trolox/g, compared to black tea, which has phenolic content of 66.21 to 67.32 mg GAE/g and DPPH values of 79.84 to 87.73 ml Trolox/g. Conversely, black tea contains higher levels of caffeine (31.95 to 37.36 ppm), flavonoids (63.70 to 67.78 mg QE/g), and tannins (14.02 to 17.36 mg TAE/g) than green tea, which has caffeine levels of 25.18 to 28.41 ppm, flavonoid content of 27.17 to 37.80 mg QE/g, and tannin content of 5.87 to 7.21 mg TAE/g. The analysis indicates that black tea has higher concentrations of theaflavins, thearubigins, highly polymerized substances, and total liquor color compared to green tea, contributing to its distinctive flavor and appearance.

کلیدواژه‌ها English

Green Tea
Black Tea
Polyphenol
Antioxidant
Biochemical
Health benefit
[1] Vinci, G., D’Ascenzo, F., Maddaloni, L., Prencipe, S. A., & Tiradritti, M. (2022). The influence of green and black tea infusion parameters on total polyphenol content and antioxidant activity by ABTS and DPPH assays. Beverages, 8(2), 18.
[2] Fairtrade International. Innovation and Resilience for a More Sustainable World; Annual Report 2019–2020; Fairtrade International: Bonn, Germany, 2020.
[3] Diniz, P. H. G. D., Barbosa, M. F., de Melo Milanez, K. D. T., Pistonesi, M. F., & de Araújo, M. C. U. (2016). Using UV–Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup. Food Chemistry, 192, 374-379.
[4] Bortolini, D. G., Haminiuk, C. W. I., Pedro, A. C., Fernandes, I. D. A. A., & Maciel, G. M. (2021). Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chemistry: X, 12, 100160.
[5] D’Auria, J. C., Cohen, S. P., Leung, J., Glockzin, K., Glockzin, K. M., Gervay-Hague, J. & Meinhardt, L. W. (2022). United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. Frontiers in Plant Science, 13, 934651.
[6] Naumovski, N., Foscolou, A., D’Cunha, N. M., Tyrovolas, S., Chrysohoou, C., Sidossis, L. S. & Panagiotakos, D. (2019). The association between green and black tea consumption on successful aging: a combined analysis of the ATTICA and Mediterranean ISlands (MEDIS) epidemiological studies. Molecules, 24(10), 1862.
[7] Islam, M. N., Tamanna, S., Rahman, M. M., Ali, M. A., & Mia, I. (2021). Climatic and environmental challenges of tea cultivation at Sylhet area in Bangladesh. Climate change in Bangladesh: A cross-disciplinary framework, 93-118.
[8] Pradhan, S., & Dubey, R. C. (2021). Beneficial properties of green tea. Antioxid Prop Heal Benefits Green Tea, 21(5), 27-56.
[9] Koch, W. (2021). Theaflavins, thearubigins, and theasinensins. Handbook of Dietary Phytochemicals, 975-1003.
[10] Capasso, L., De Masi, L., Sirignano, C., Maresca, V., Basile, A., Nebbioso, A. & Bontempo, P. (2025). Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules, 30(3), 654.
[11] Su, X., Wang, W., Xia, T., Gao, L., Shen, G., & Pang, Y. (2018). Characterization of a heat-responsive UDP: Flavonoid glucosyltransferase gene in tea plant (Camellia sinensis). PLoS One, 13(11), e0207212.
[12] Huang, A., Jiang, Z., Tao, M., Wen, M., Xiao, Z., Zhang, L. & Zhang, L. (2021). Targeted and nontargeted metabolomics analysis for determining the effect of storage time on the metabolites and taste quality of Keemun black tea. Food Chemistry, 359, 129950.
[13] Liang, L. L., Song, Y. K., Qian, W. J., Ruan, J. Y., Ding, Z. T., Zhang, Q. F., & Hu, J. H. (2021). Metabolomics analysis reveals the responses of tea plants to excessive calcium. Journal of the Science of Food and Agriculture, 101(13), 5678-5687.
[14] Cao, H., Wang, F., Lin, H., Ye, Y., Zheng, Y., Li, J. & Yue, C. (2020). Transcriptome and metabolite analyses provide insights into zigzag-shaped stem formation in tea plants (Camellia sinensis). BMC Plant Biology, 20, 1-14
[15] Xia, E. H., Zhang, H. B., Sheng, J., Li, K., Zhang, Q. J., Kim, C. & Gao, L. Z. (2017). The tea tree genome provides insights into tea flavor and the independent evolution of caffeine biosynthesis. Molecular plant, 10(6), 866-877.
[16] Wang, C., Han, J., Pu, Y., & Wang, X. (2022). Tea (Camellia sinensis): a review of nutritional composition, potential applications, and Omics Research. Applied Sciences, 12(12), 5874.
[17] Cleverdon, R., Elhalaby, Y., McAlpine, M. D., Gittings, W., & Ward, W. E. (2018). Total polyphenol content and antioxidant capacity of tea bags: comparison of black, green, red rooibos, chamomile and peppermint over different steep times. Beverages, 4(1), 15.
[18] Kowalska, J., Marzec, A., Domian, E., Galus, S., Ciurzyńska, A., Brzezińska, R., & Kowalska, H. (2021). The influence of tea brewing parameters on the antioxidant potential of infusions and extracts depends on the degree of processing of the leaves of Camellia sinensis. Molecules, 26(16), 4773.
[19] Zhang, Q., Li, T., Wang, Q., LeCompte, J., Harkess, R. L., & Bi, G. (2020). Screening tea cultivars for novel climates: Plant growth and leaf quality of Camellia sinensis cultivars grown in Mississippi, United States. Frontiers in Plant Science, 11, 280.
[20] Dubey, K. K., Janve, M., Ray, A., & Singhal, R. S. (2020). Ready-to-drink tea. Trends in non-alcoholic beverages, 101-140.
[21] Zhu, F., Sakulnak, R., & Wang, S. (2016). Effect of black tea on antioxidant, textural, and sensory properties of Chinese steamed bread. Food Chemistry, 194, 1217-1223.
[22] Xu, M., Hou, G. G., Ding, J., & Du, X. (2020). Comparative study on textural and rheological properties between dry white salted noodle and yellow alkaline noodle as influenced by different tea extracts. Journal of Food Processing and Preservation, 44(12), e14981.
[23] Halim, M. A., Kanan, K. A., Nahar, T., Rahman, M. J., Ahmed, K. S., Hossain, H. & Ahmed, M. (2022). Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. Lwt, 167, 113813
[24] Akhter, M. J., Hosain, M. M., Halim, M. A., Prabin, M., Parvin, S., Siddika, A. & Al-Amin, M. (2022). Consumer acceptance and physicochemical properties of developed carambola (Averrhoa carambola) candy. World Journal of Engineering and Technology, 10(2), 458-471.
[25] Christine, E. A., Albert, Y. K., & Séraphin, K. C. (2017). Determination of the Minerals of the Herbal Tea and Tea Green from Lippia multiflora. American Journal of Plant Sciences, 8(11), 2608-2621
[26] Khan, M. R. M., Islam, M. A., Uddin, R., Kalam, M. A., Baishakh, N. N., Barua, P. & Ahmad, I. (2023). Biochemical investigation of Bangladeshi black tea and their correlation to organoleptic quality evaluation. Heliyon, 9(6).
[27] Halim, M. A., Wazed, M. A., Al Obaid, S., Ansari, M. J., Tahosin, A., Rahman, M. T. & Khatun, A. A. (2024a). Effect of storage on physicochemical properties, bioactive compounds and sensory attributes of drinks powder enriched with pumpkin (Cucurbita moschata L.). Journal of Agriculture and Food Research, 18, 101337
[28] Halim, M. A., Chowdhury, R. I., Tahosin, A., Rahman, M. T., Ove, T. A., Sheikh, M. A. M. & Khatun, A. A. (2024b). Exploring bioactive compounds and antioxidant potentials in cake, biscuits, and papad innovations with wheatgrass powder (Triticum aestivum L.). Food Chemistry Advances, 4, 100705.
[29] Tahosin, A., Halim, M. A., Khatun, H., Ove, T. A., Islam, M. A., Sarker, J. & Khatun, A. A. (2024). Production and evaluation of quality characteristics of ready-to-drink Aloe vera juice incorporation with ginger and lemon. Food and Humanity, 3, 100324
[30] Halim, A., Saha, R. K., Mony, T., Akhter, H., & Khatun, A. A. (2023). A study on wheat grass powder incorporated products and its nutritional value. International Journal of Food Science and Nutrition, 8(4), 25–29.
[31] Halim, M. A., Alharbi, S. A., Alarfaj, A. A., Almansour, M. I., Ansari, M. J., Nessa, M. J. & Khatun, A. A. (2024c). Improvement and Quality Evaluation of Gluten-Free Cake Supplemented with Sweet Potato Flour and Carrot Powder. Applied Food Research, 100543.
[32] Rahman, M. T., Ove, T. A., Halim, M. A., Khatun, A., Yeasmin, M. R., Kamal, M. M., & Khatun, A. A. (2024a). Formulation and characterization of bael pulp powder from locally grown bael fruit (Aegle marmelos L.) in Dinajpur, Bangladesh. Food and Humanity, 2, 100213.
[33] Makanjuola, O. M. (2016). Routine chemical analysis of tea commercially available in Ogun State, South West, Nigeria. International Journal of Research Studies in Biosciences (IJRSB), 4(11), 15-18.
[34] Mafe, A. N., Edo, G. I., Makia, R. S., Joshua, O. A., Akpoghelie, P. O., Gaaz, T. S., ... & Umar, H. (2024). A review on food spoilage mechanisms, foodborne diseases and commercial aspects of food preservation and processing. Food Chemistry Advances, 5, 100852.
[35] Rahman, M. T., Halim, M. A., Mozumder, N. R., Ove, T. A., & Khatun, A. A. (2024b). Phytochemicals and antioxidant properties of bael (Aegle marmelos L.) pulp powder and its products. Journal of Agriculture and Food Research, 15, 100971.
[36] Faramayuda, F., S. Riyanti and S. Mahanadhiandinie. 2022. Antioxidant activity and determination of total polyphenol levels in white tea leaves (Camellia sinensis L.). Sarhad Journal of Agriculture, 38(5): 111-120.
[37] Aaqil, M., Peng, C., Kamal, A., Nawaz, T., Zhang, F., & Gong, J. (2023). Tea harvesting and processing techniques and its effect on phytochemical profile and final quality of black tea: A review. Foods, 12(24), 4467.
[38] Chen, Q. Y., Liu, M. L., Li, R. Y., Jiang, B., Liu, K. Y., Xiao, Y. Q. & Zhao, M. (2024). Changes in lipids and medium-and long-chain fatty acids during the spontaneous fermentation of ripened pu-erh tea. Current Research in Food Science, 9, 100831.
[39] Imran, A., Butt, M. S., Yasin, M., Imran, M., Batool, R., & Naz, A. (2011). Phytochemical screening of different black tea brands. Int J Food Safety, 13, 226-231.
[40] Kodagoda, K. H. G. K., & Wickramasinghe, I. (2017). Health benefits of green and black tea: A Review. International Journal of Advanced Engineering Research and Science, 4(7), 237217.
[41] Hosen, M., Karmokar, N., Bhuiyan, M., Khanam, J., & Rahman, M. (2014). Estimation of caffeine, niacin and calorie content in tea commonly consumed by Dhaka city residents. Indian Journal of Pharmaceutical and Biological Research, 2(4), 84.
[42] Shokrzadeh, M., Hosseinzadeh, M. H., Boustani, M., & Habibi, E. (2022). Determination of caffeine, total phenol, and heavy metals content in green and black tea collected from Gilan Province, Iran by spectroscopic method. Pharmaceutical and Biomedical Research, 8(1), 23-30.
[43] Chy, H. M. R., Islam, A. F. M. S., Saha, J. K., Tabassum, R., Aziz, M. A., & Monshi, F. I. (2022). Evaluation of morphological traits and biochemical parameters of tea (Camellia sinensis) genotypes for the quality and yields. Tropical Agricultural Research and Extension, 25(2).
[44] Hazra, A., Saha, S., Dasgupta, N., Kumar, R., Sengupta, C., & Das, S. (2021). Ecophysiological traits differentially modulate secondary metabolite accumulation and antioxidant properties of tea plant [Camellia sinensis (L.) O. Kuntze]. Scientific reports, 11(1), 2795.
[45] Alam, K. M. M., Uddin, M. S., Chowdhury, M. A. M., & Motalib, M. A. (2011). Qualitative evaluation of ten major marketed brands of tea in Bangladesh. Plant Archives, 11(1), 173-177.
[46] Someswararao, C., Srivastav, P. P., & Das, H. (2013). Quality of black teas in Indian market. African Journal of Agricultural Research, 8(5), 491-494.
[47] Tang, G. Y., Meng, X., Gan, R. Y., Zhao, C. N., Liu, Q., Feng, Y. B. & Li, H. B. (2019). Health functions and related molecular mechanisms of tea components: an update review. International journal of molecular sciences, 20(24), 6196.
[48] Long, P., Rakariyatham, K., Ho, C. T., & Zhang, L. (2023). Thearubigins: Formation, structure, health benefit and sensory property. Trends in Food Science & Technology, 133, 37-48.
[49] Takemoto, M., & Takemoto, H. (2018). Synthesis of theaflavins and their functions. Molecules, 23(4), 918.
[50] Mosallaie, F., Pirnia, M., Dehghan, Z., Falah, F., Sabbaghzadeh, R., Behbahani, B. A. & Vasiee, A. (2024). Unveiling the chemical composition, antioxidant and antibacterial properties, and mechanistic insights of Convolvulus arvensis extract through molecular docking simulations. Applied Food Research, 4(2), 100580.
[51] Abdullah, S. S. S., & Mazlan, A. N. (2020). Quantification of polyphenols and antioxidant activity in several herbal and green tea products in Malaysia. Materials Today: Proceedings, 31, A106-A113.
[52] Nhu-Trang, T. T., Nguyen, Q. D., Cong-Hau, N., Anh-Dao, L. T., & Behra, P. (2023). Characteristics and relationships between total polyphenol and flavonoid contents, antioxidant capacities, and the content of caffeine, gallic acid, and major catechins in wild/ancient and cultivated teas in Vietnam. Molecules, 28(8), 3470.
[53] Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G. & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243.
[54] Piyasena, K. N. P., & Hettiarachchi, L. S. K. (2023). Comparison of tea quality parameters of conventionally and organically grown tea, and effects of fertilizer on tea quality: A mini-review. Food Chemistry Advances, 100399.
[55] Alizadeh Behbahani, B., Noshad, M., Falah, F., Zargari, F., Nikfarjam, Z., & Vasiee, A. (2025). First Report on the Synergy of Nepeta Menthoides and Nepeta Cephalotes Essential Oils for Antimicrobial and Preservation Applications: A Multi‐Ligand Molecular Docking Simulation. Applied Food Research, 5(100707), 10-1016.
[56] Jalil Sarghaleh, S., Alizadeh Behbahani, B., Hojjati, M., Vasiee, A., & Noshad, M. (2023). Evaluation of the constituent compounds, antioxidant, anticancer, and antimicrobial potential of Prangos ferulacea plant extract and its effect on Listeria monocytogenes virulence gene expression. Frontiers in microbiology, 14, 1202228.
[57] Dutta, A. K., Siddiquee, M. A., Hossain, S., & Kabir, Y. (2013). Finlay green tea possesses the highest in vitro antioxidant activity among the 20 commercially available tea brands of Bangladesh. Malaysian Journal of Pharmaceutical Sciences, 11(2), 11.
[58] Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial properties of green tea catechins. International journal of molecular sciences, 21(5), 1744.
[59] Yang, Y., & Zhang, T. (2019). Antimicrobial activities of tea polyphenol on phytopathogens: A review. Molecules, 24(4), 816.
[60] Anggraini, T., Nanda, R. F., & Syukri, D. (2021). Effect of processing on green and black tea DPPH radical scavenging activity, IC50 value, total polyphenols, catechin and epigallocatechin gallate content. In IOP Conference Series: Earth and Environmental Science (Vol. 709, No. 1, p. 012017). IOP Publishing.
[61] Feng, Z., Li, Y., Li, M., Wang, Y., Zhang, L., Wan, X., & Yang, X. (2019). Tea aroma formation from six model manufacturing processes. Food Chemistry, 285, 347-354.