[1] Rezac, S., Kok, C.R., Heermann, M. and Hutkins, R. (2018). Fermented foods as a dietary source of live organisms. Frontiers in microbiology, 9: p. 1785.
[2] Dabbagh, F., Negahdaripour, M., Berenjian, A., Behfar, A., Mohammadi, F., Zamani, M., Irajie, C. and Ghasemi, Y. (2014). Nattokinase: production and application. Applied microbiology and biotechnology, 98: 9199-9206.
[3] Weng, Y., Yao, J., Sparks, S. and Wang, K.Y. (2017). Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease. International journal of molecular sciences, 18(3): p. 523.
[4] Afzaal, M., Saeed, F., Islam, F., Ateeq, H., Asghar, A., Shah, Y.A., Ofoedu, C.E. and Chacha, J.S. (2022). Nutritional health perspective of natto: A critical review. Biochemistry Research International, 2022 (1), p.5863887.
[5] Nguyen, T. and Nguyen, C.H. (2020). Determination of factors affecting the protease content generated in fermented soybean by Bacillus subtilis 1423. Energy Reports, 6: 831-836.
[6] Joshi, M., Timilsena, Y. and Adhikari, B. (2017). Global production, processing and utilization of lentil: A review. Journal of Integrative Agriculture, 16(12): 2898-2913.
[7] Pan, S., Chen, G., Zeng, J., Cao, X., Zheng, X., Zeng, W. and Liang, Z. (2019). Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: Process optimization and kinetic modeling. Biochemical Engineering Journal, 141: 268-277.
[8] Zapata, A. and Ramirez-Arcos, S. (2015). A comparative study of McFarland turbidity standards and the Densimat photometer to determine bacterial cell density. Current microbiology, 70: 907-909.
[9] Gowthami, K. and Madhuri, R. (2021). Optimization of cultural conditions for maximum production of fibrinolytic enzymes from the local marine bacterial isolates and evaluation of their wound healing and clot dissolving properties. J. Pharm. Res. Int, 33: 246-255.
[10] Amin, K., Zeng, X., You, Y., Hu, Y., Sun, H., Lyu, B., Piao, C. and Yu, H. (2020). Enhanced thermostability and antioxidant activity of Nattokinase by biogenic enrichment of selenium. Journal of Food Measurement and Characterization, 14(4): 2145-2154.
[11] Vu, V.H., Pham, T.A. and Kim, K. (2011). Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology, 39(1): 20-25.
[12] Masoodi, N., Mobini-Dehkordii, M. and Saffar, B. (2021). Optimization of alpha-amylase production using Bacillus subtilis PTCC 1720 under solid-state fermentation and partial purification of the enzyme. Biological Journal of Microorganism, 10(39): 1-11.
[13] Ding, X., Yao, L., Hou, Y., Hou, Y., Wang, G., Fan, J. and Qian, L. (2020). Optimization of culture conditions during the solid-state fermentation of tea residue using mixed strains. Waste and Biomass Valorization, 11: 6667-6675.
[14] Zeng, W., Li, W., Shu, L., Yi, J., Chen, G. and Liang, Z. (2013). Non-sterilized fermentative co-production of poly (γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28. Bioresource technology, 142: 697-700.
[15] Li, M., Zhang, Z., Li, S., Tian, Z. and Ma, X., (2021). Study on the mechanism of production of γ-PGA and nattokinase in Bacillus subtilis natto based on RNA-seq analysis. Microbial Cell Factories, 20(1), 83.
[16] Wang, S.L., Chen, H.J., Liang, T.W. and Lin, Y.D. (2009). A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochemistry, 44(1): 70-76.
[17] Wang, D.S., Torng, C.C., Lin, I.P., Cheng, B.W., Liu, H.R. and Chou, C.Y. (2006). Optimization of nattokinase production conduction using response surface methodology. Journal of food process engineering, 29(1): 22-35.
[18] Guo, N., Jiang, Y.W., Song, X.R., Li, Y.Y., Liu, Z.M. and Fu, Y.J. (2019). Effect of Bacillus natto solid‐state fermentation on the functional constituents and properties of Ginkgo seeds. Journal of food biochemistry, 43(5): e12820.
[19] Anggraeni, F. and Poernomo, A.T. (2016). Pengaruh Konsentrasi Molase Terhadap Aktivitas Enzim Fibrinolitik dari Bacillus subtilis ATCC 6633. Berkala Ilmiah Kimia Farmasi, 5(1): 18-24.
[20] Sharan, A. and Darmwal, N.S. (2007). Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresource technology, 98(4): 881-885.
[21] Moharam, M.E., El-Bendary, M.A., El-Beih, F., Easa, S.M.H., Elsoud, M.M.A., Azzam, M.I. and Elgamal, N.N. (2019). Optimization of fibrinolytic enzyme production by newly isolated Bacillus subtilis Egy using central composite design. Biocatalysis and agricultural biotechnology, 17: 43-50.
[22] Sahoo, A., Mahanty, B., Daverey, A. and Dutta, K. (2020). Nattokinase production from Bacillus subtilis using cheese whey: Effect of nitrogen supplementation and dynamic modelling. Journal of Water Process Engineering, 38: 101533.
[23] Thu, N.T., Khue, N.T., Huy, N.D., Tien, N.Q. and Loc, N.H. (2020). Characterizations and fibrinolytic activity of serine protease from Bacillus subtilis C10. Current Pharmaceutical Biotechnology, 21(2): 110-116.
[24] Bajaj, B.K., Singh, S., Khullar, M., Singh, K. and Bhardwaj, S. (2014). Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues. Brazilian Archives of Biology and Technology, 57: 653-662.
[25] Al Mamun, M.A., Mian, M.M., Saifuddin, M., Khan, S.N. and Hoq, M.M. (2017). Optimization of fermenting medium by statistical method for production of alkaline protease by Bacillus licheniformis MZK05M9. Journal of Applied Biology and Biotechnology, 5(6): 24-28.
[26] Gaddad, S.M. (2019). Enhanced Production of Extracellular Alkaline Protease by Bacillus cereus GVK21 by Optimized formulations. International Journal of Pharmacy and Biological Sciences, Transactions B: Applications, 9(1), 1103-1113.