استفاده از سوبسترای آرد عدس قرمز برای تولید آنزیم ناتوکیناز توسط باسیلوس سابتیلیس ناتو

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران
2 گروه بیوتکنولوژی دارویی، دانشکده داروسازی، دانشگاه علوم پزشکی شیراز، شیراز، ایران
چکیده
در این پژوهش شرایط تولید بهینه ناتوکیناز با استفاده از باکتری باسیلوس سابتیلیس بر روی سوبسترای عدس دال مورد بررسی قرار گرفت. برای بهینه‌سازی فرایند تخمیر، اثر سه متغیر زمان تخمیر (24، 48 و 72 ساعت)، غلظت ملاس (3، 5 و 7 درصد) و مقدار آب (50، 75 و 100 میلی‌لیتر) بر میزان فعالیت فیبرینولیتیکی و پروتئازی مورد بررسی قرار گرفت. نتایج در قالب طرح مرکب مرکزی (CCD) بررسی و به روش سطح پاسخ (RSM) مدل‌سازی و تجزیه و تحلیل شد. ضریب تبیین مدل‌های رگرسیونی برازش شده برای فعالیت‌های فیبرینولیتیک (مدل درجه دوم) و پروتئازی (مدل خطی) به‌ترتیب 15/97 و 12/90 درصد بوده و فاکتور عدم برازش آنها در سطح اطمینان 95 درصد معنی‌دار نبود، از این رو صحت مدل‌ها برای برازش اطلاعات تایید گردید. با افزایش میزان آب، ملاس و مدت زمان تخمیر، فعالیت فیبرینولیتیک به‌ترتیب افزایش، کاهش و افزایش یافت (p≤0.05). با افزایش مقدار آب، فعالیت پروتئازی نیز افزایش یافت، اما این افزایش معنی‌دار نبود، در حالی‌که افزایش میزان ملاس و مدت زمان تخمیر به‌ترتیب منجر به کاهش و افزایش معنی‌دار فعالیت پروتئازی گردیدند (p≤0.05). در ارتباط با بهینه‌سازی، شرایط بهینه تخمیر عبارت بود از: 38/92 میلی‌لیتر آب، 66/3 درصد ملاس و 90/70 ساعت تخمیر که در چنین شرایطی میزان فعالیت آنزیم‌های فیبرینولیتیک و پروتئاز به‌ترتیب 03/2476 و 68/1 واحد بر گرم پیش‌بینی گردید. برای اعتبارسنجی مدل، تخمیر تحت شرایط بهینه انجام شد و پاسخ‌های به‌دست آمده با پاسخ‌های پیش‌بینی شده توسط مدل مقایسه گردید. نزدیکی داده‌های آزمایشگاهی به مقادیر پیش‌بینی شده توسط مدل صحت مدل را تایید نمود. نتایج این پژوهش نشان داد که از عدس دال می‌توان به‌عنوان سوبسترای تخمیر توسط باکتری باسیلوس سابتیلیس جهت تولید آنزیم‌ ناتوکیناز استفاده نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Utilization of Red Lentil Flour Substrate for the Production of Nattokinase Enzyme by Bacillus subtilis Natto

نویسندگان English

Aliakbar Gholamhosseinpour 1
Fatemeh Misagh 1
Mohammad Hossein Morowvat 2
Younes Ghasemi 2
1 Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran
2 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
چکیده English

In this research, the optimal production conditions of nattokinase using Bacillus subtilis Natto on red lentil flour substrate were studied. To optimize the fermentation process, the effects of three variables of fermentation time (24, 48 and 72 h), molasses concentration (3, 5 and 7%) and water content (50, 75 and 100 ml) on fibrinolytic and protease activities were investigated. The central composite design (CCD) was employed, and the results were modelled and analyzed using response surface methodology (RSM). Coefficients of determination, R2, of fitted regression models for fibrinolytic (quadratic model) and protease (linear model) activities were 97.15 and 90.12%, respectively, and their lack-of-fit was not significant at 95%. Hence, the models for all the responses were highly adequate. Fibrinolytic activity increased significantly (p≤0.05) with increasing water content and fermentation time, while increasing the amount of molasses decreased fibrinolytic activity (p≤0.05). With increasing the amount of water, protease activity also increased, but this increase was not significant, while increasing the amount of molasses and fermentation time led to a significant decrease and increase in protease activity (p≤0.05), respectively. Concerning optimization, the optimal fermentation conditions were determined as 92.38 ml of water, 3.66% molasses, and 70.90 h of fermentation. Under these conditions, the activities of fibrinolytic enzymes and proteases were predicted to be 2476.03 and 1.68 U/g, respectively. For validation of the model, the optimal sample was produced, and the experimental responses were compared with the responses predicted by the model. The experimental values obtained were quite close to those predicted by the model, indicating the validity of the model. The results of this study showed that red lentil could be used as a substrate for fermentation by B. subtilis to produce the enzyme nattokinase.

کلیدواژه‌ها English

B. subtilis Natto
Nattokinase
Fermentation
RSM
[1] Rezac, S., Kok, C.R., Heermann, M. and Hutkins, R. (2018). Fermented foods as a dietary source of live organisms. Frontiers in microbiology, 9: p. 1785.
[2] Dabbagh, F., Negahdaripour, M., Berenjian, A., Behfar, A., Mohammadi, F., Zamani, M., Irajie, C. and Ghasemi, Y. (2014). Nattokinase: production and application. Applied microbiology and biotechnology, 98: 9199-9206.
[3] Weng, Y., Yao, J., Sparks, S. and Wang, K.Y. (2017). Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease. International journal of molecular sciences, 18(3): p. 523.
[4] Afzaal, M., Saeed, F., Islam, F., Ateeq, H., Asghar, A., Shah, Y.A., Ofoedu, C.E. and Chacha, J.S. (2022). Nutritional health perspective of natto: A critical review. Biochemistry Research International, 2022 (1), p.5863887.
[5] Nguyen, T. and Nguyen, C.H. (2020). Determination of factors affecting the protease content generated in fermented soybean by Bacillus subtilis 1423. Energy Reports, 6: 831-836.
[6] Joshi, M., Timilsena, Y. and Adhikari, B. (2017). Global production, processing and utilization of lentil: A review. Journal of Integrative Agriculture, 16(12): 2898-2913.
[7] Pan, S., Chen, G., Zeng, J., Cao, X., Zheng, X., Zeng, W. and Liang, Z. (2019). Fibrinolytic enzyme production from low-cost substrates by marine Bacillus subtilis: Process optimization and kinetic modeling. Biochemical Engineering Journal, 141: 268-277.
[8] Zapata, A. and Ramirez-Arcos, S. (2015). A comparative study of McFarland turbidity standards and the Densimat photometer to determine bacterial cell density. Current microbiology, 70: 907-909.
[9] Gowthami, K. and Madhuri, R. (2021). Optimization of cultural conditions for maximum production of fibrinolytic enzymes from the local marine bacterial isolates and evaluation of their wound healing and clot dissolving properties. J. Pharm. Res. Int, 33: 246-255.
[10] Amin, K., Zeng, X., You, Y., Hu, Y., Sun, H., Lyu, B., Piao, C. and Yu, H. (2020). Enhanced thermostability and antioxidant activity of Nattokinase by biogenic enrichment of selenium. Journal of Food Measurement and Characterization, 14(4): 2145-2154.
[11] Vu, V.H., Pham, T.A. and Kim, K. (2011). Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology, 39(1): 20-25.
[12] Masoodi, N., Mobini-Dehkordii, M. and Saffar, B. (2021). Optimization of alpha-amylase production using Bacillus subtilis PTCC 1720 under solid-state fermentation and partial purification of the enzyme. Biological Journal of Microorganism, 10(39): 1-11.
[13] Ding, X., Yao, L., Hou, Y., Hou, Y., Wang, G., Fan, J. and Qian, L. (2020). Optimization of culture conditions during the solid-state fermentation of tea residue using mixed strains. Waste and Biomass Valorization, 11: 6667-6675.
[14] Zeng, W., Li, W., Shu, L., Yi, J., Chen, G. and Liang, Z. (2013). Non-sterilized fermentative co-production of poly (γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28. Bioresource technology, 142: 697-700.
[15] Li, M., Zhang, Z., Li, S., Tian, Z. and Ma, X., (2021). Study on the mechanism of production of γ-PGA and nattokinase in Bacillus subtilis natto based on RNA-seq analysis. Microbial Cell Factories, 20(1), 83.
[16] Wang, S.L., Chen, H.J., Liang, T.W. and Lin, Y.D. (2009). A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochemistry, 44(1): 70-76.
[17] Wang, D.S., Torng, C.C., Lin, I.P., Cheng, B.W., Liu, H.R. and Chou, C.Y. (2006). Optimization of nattokinase production conduction using response surface methodology. Journal of food process engineering, 29(1): 22-35.
[18] Guo, N., Jiang, Y.W., Song, X.R., Li, Y.Y., Liu, Z.M. and Fu, Y.J. (2019). Effect of Bacillus natto solid‐state fermentation on the functional constituents and properties of Ginkgo seeds. Journal of food biochemistry, 43(5): e12820.
[19] Anggraeni, F. and Poernomo, A.T. (2016). Pengaruh Konsentrasi Molase Terhadap Aktivitas Enzim Fibrinolitik dari Bacillus subtilis ATCC 6633. Berkala Ilmiah Kimia Farmasi, 5(1): 18-24.
[20] Sharan, A. and Darmwal, N.S. (2007). Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresource technology, 98(4): 881-885.
[21] Moharam, M.E., El-Bendary, M.A., El-Beih, F., Easa, S.M.H., Elsoud, M.M.A., Azzam, M.I. and Elgamal, N.N. (2019). Optimization of fibrinolytic enzyme production by newly isolated Bacillus subtilis Egy using central composite design. Biocatalysis and agricultural biotechnology, 17: 43-50.
[22] Sahoo, A., Mahanty, B., Daverey, A. and Dutta, K. (2020). Nattokinase production from Bacillus subtilis using cheese whey: Effect of nitrogen supplementation and dynamic modelling. Journal of Water Process Engineering, 38: 101533.
[23] Thu, N.T., Khue, N.T., Huy, N.D., Tien, N.Q. and Loc, N.H. (2020). Characterizations and fibrinolytic activity of serine protease from Bacillus subtilis C10. Current Pharmaceutical Biotechnology, 21(2): 110-116.
[24] Bajaj, B.K., Singh, S., Khullar, M., Singh, K. and Bhardwaj, S. (2014). Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues. Brazilian Archives of Biology and Technology, 57: 653-662.
[25] Al Mamun, M.A., Mian, M.M., Saifuddin, M., Khan, S.N. and Hoq, M.M. (2017). Optimization of fermenting medium by statistical method for production of alkaline protease by Bacillus licheniformis MZK05M9. Journal of Applied Biology and Biotechnology, 5(6): 24-28.
[26] Gaddad, S.M. (2019). Enhanced Production of Extracellular Alkaline Protease by Bacillus cereus GVK21 by Optimized formulations. International Journal of Pharmacy and Biological Sciences, Transactions B: Applications, 9(1), 1103-1113.