1- Ben-Arye, T., Shandalov, Y., Ben-Shaul, S., Landau, S., Zagury, Y., Ianovici, I., Lavon, N., & Levenberg, S. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 1(4), 210–220. https://doi.org/10.1038/s43016-020-0046-5
2- Kumar, P., Sharma, N., Sharma, S., Mehta, N., Kumar Verma, A., Chemmalar, S., & Qurni Sazili, A. (2021). In-vitro meat: a promising solution for sustainability of meat sector. Journal of Animal Science and Technology, 63(4), 693–724. https://doi.org/10.5187/jast.2021.e85
3- Bhat, Z. F., & Fayaz, H. (2011). Prospectus of cultured meat - Advancing meat alternatives. In Journal of Food Science and Technology (Vol. 48, Issue 2, pp. 125–140). https://doi.org/10.1007/s13197-010-0198-7
4- Zhang, K., Wang, S., Zhou, C., Cheng, L., Goa, X., Xie, X., Sun, J., Wang, H., Weir, M., Reynold, M., & Zhang, N. (2023). Advanced smart biomaterials and constructs for hard tissue engineering and regeneration, bone research, 6(31). https://www.nature.com/articles/s41413-018-0032-9#citeas
5- Ashraf, M. U., Hussain, M. A., Muhammad, G., Haseeb, M. T., Bashir, S., Hussain, S. Z., & Hussain, I. (2017). A superporous and superabsorbent glucuronoxylan hydrogel from quince (Cydonia oblanga): Stimuli responsive swelling, on-off switching and drug release. International Journal of Biological Macromolecules, 95, 138–144. https://doi.org/10.1016/j.ijbiomac.2016.11.057
6- Nagai, Y., Yokoi, H., Kaihara, K., & Naruse, K. (2012). The mechanical stimulation of cells in 3D culture within a self-assembling peptide hydrogel. Biomaterials, 33(4), 1044–1051. https://doi.org/10.1016/j.biomaterials.2011.10.049
7- Tseng, L.-F., Mather, P. T., & Henderson, J. H. (2013). Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta Biomaterialia, 9(11), 8790–8801. https://doi.org/10.1016/j.actbio.2013.06.043
8- Khan, F., & Tanaka, M. (2018). Designing smart biomaterials for tissue engineering. International Journal of Molecular Sciences, 19(1). https://doi.org/10.3390/ijms19010017
9- Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027
10- Li, X., Liu, X., Yu, Y., Qu, X., Feng, Q., Cui, F., & Watari, F. (2009). Recent patents on polymeric scaffolds for tissue engineering. Recent Patents on Biomedical Engineering (Discontinued), 2(1), 65–72. http://dx.doi.org/10.2174/1874764710902010065
11- Hezaveh, H., & Muhamad, I. I. (2013). Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 182–191. https://doi.org/10.1016/j.jtice.2012.10.011
12- Dafe, A., Etemadi, H., Zarredar, H., & Mahdavinia, G. R. (2017). Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules, 97, 299–307. https://doi.org/10.1016/j.ijbiomac.2017.01.016
13- Santo, V. E., Frias, A. M., Carida, M., Cancedda, R., Gomes, M. E., Mano, J. F., & Reis, R. L. (2009). Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules, 10(6), 1392–1401. https://pubs.acs.org/doi/10.1021/bm8014973
14- Demir, D. (2024). Potential use of extracted flax seed mucilage in the construction of macroporous cryo-scaffolds. Biomedical Materials, 19(5), 055002. https://doi.org/10.1088/1748-605x/ad5bad
15- Soukoulis, C., Gaiani, C., & Hoffmann, L. (2018). Plant seed mucilage as emerging biopolymer in food industry applications. Current Opinion in Food Science, 22, 28–42. https://doi.org/10.1016/j.cofs.2018.01.004
16- Ashraf, M. U., Hussain, M. A., Bashir, S., Haseeb, M. T., & Hussain, Z. (2018). Quince seed hydrogel (glucuronoxylan): Evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. Journal of Drug Delivery Science and Technology, 45, 455–465. https://doi.org/10.1016/j.jddst.2018.04.008
17- Jouki, M., Mortazavi, S. A., Yazdi, F. T., & Koocheki, A. (2014b). Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. International Journal of Biological Macromolecules, 66, 113–124. https://doi.org/10.1016/j.ijbiomac.2014.02.026
18- Jouki, M., Mortazavi, S. A., Yazdi, F. T., & Koocheki, A. (2014a). Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers, 99, 537–546. https://doi.org/10.1016/j.carbpol.2013.08.077
19- Popa, E., Reis, R., & Gomes, M. (2012). Chondrogenic phenotype of different cells encapsulated in κ‐carrageenan hydrogels for cartilage regeneration strategies. Biotechnology and Applied Biochemistry, 59(2), 132–141. https://doi.org/10.1002/bab.1007
20- Haghniaz, R., Ankit Gangrade, A., Montazerian, H., Zarei, F., Menekse Ermis, M., Li, Z., Du, Y., Khosravi, S., Barros, N., Mandal, K., Rashad, A., Zehtabi, F., Li, J., Dokmeci, M., Kim, H., Khademhosseini, A., & Yangzhi, Z. (2023). An All-In-One Transient Theranostic Platform for Intelligent Management of Hemorrhage, Advanced Science, 10, 2301406. https://doi.org/10.1002/advs.202301406
21- Anowar H. Khan, A., Zhou, S., Moe, M., Ortega Quesada, B., Bajgiran, K., Lassiter, H., & Melvin, A. (2022). Generation of 3D Spheroids Using a Thiol–Acrylate Hydrogel Scaffold to Study Endocrine Response in ER+ Breast Cancer, Biomaterials Science & Engineering, 8, 9. https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00491
22- 20- Lohani, A., Singh, G., Bhattacharya, S. S., Hegde, R. R., & Verma, A. (2016). Tailored-interpenetrating polymer network beads of κ-carrageenan and sodium carboxymethyl cellulose for controlled drug delivery. Journal of Drug Delivery Science and Technology, 31, 53–64. https://doi.org/10.1016/j.jddst.2015.11.005
23- You, J.-O., Rafat, M., Almeda, D., Maldonado, N., Guo, P., Nabzdyk, C. S., Chun, M., LoGerfo, F. W., Hutchinson, J. W., & Pradhan-Nabzdyk, L. K. (2015). pH-responsive scaffolds generate a pro-healing response. Biomaterials, 57, 22–32. https://doi.org/10.1016/j.biomaterials.2015.04.011
24- Stricker, J., Falzone, T., & Gardel, M. L. (2010). Mechanics of the F-actin cytoskeleton. Journal of Biomechanics, 43(1), 9–14. https://doi.org/10.1016/j.jbiomech.2009.09.003
25- Ryu, N.-E., Lee, S.-H., & Park, H. (2019). Spheroid culture system methods and applications for mesenchymal stem cells. Cells, 8(12), 1620. https://doi.org/10.3390/cells8121620
26- Zhang, K., Yan, S., Li, G., Cui, L., & Yin, J. (2015). In-situ birth of MSCs multicellular spheroids in poly (L-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials, 71, 24–34. https://doi.org/10.1016/j.biomaterials.2015.08.037
27- Italo Rodrigo Calori, I., Rodrigues Alves, S., Bi, H., & Claudio Tedesco, A. (2022). Type-I Collagen/Collagenase Modulates the 3D Structure and Behavior of Glioblastoma Spheroid Models. Applied Bio Materials, 5, 2. https://pubs.acs.org/doi/10.1021/acsabm.1c01138
28- Polez, R., Huynh, N., Pridgeon, C., Valle-Deldago, J., Harjumaki, R., & Osterberg, M. (2024). Insights into spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques, Materials Today Bio, 26, 1010165. https://doi.org/10.1016/j.mtbio.2024.101065
29- Shim, H., Kim, Y., Park, K., Park H., Moo Hu, K., & Kang, S. (2024). Enhancing cartilage regeneration through spheroid culture and hyaluronic acid microparticles: A promising approach for tissue engineering. Carbohydrate Polymers, 323, 121734. https://doi.org/10.1016/j.carbpol.2023.121734
30- Cui, X., Hartanto, Y., & Zhang, H. (2017). Advances in multicellular spheroids formation. Journal of the Royal Society Interface, 14(127), 20160877. https://doi.org/10.1098/rsif.2016.0877
31- Su, C., Chuah, Y. J., Ong, H. B., Tay, H. M., Dalan, R., & Hou, H. W. (2021). A facile and scalable hydrogel patterning method for microfluidic 3D cell culture and spheroid-in-gel culture array. Biosensors, 11(12), 509. https://doi.org/10.3390/bios11120509