امکان استفاده از داربست‌های هوشمند متشکل از موسیلاژ دانه به و کاپاکاراگینان به عنوان داربست سلولی در ‌شرایط نرمال فیزیولوژیکی و تغییر ‌pH‌ ‌

نویسندگان
1 دانشگاه صنعتی اصفهان
2 دانشگاه اصفهان
3 موسسه علمی-پژوهش رویان
چکیده
هدف از پژوهش حاضر بررسی قابلیت رشد سلولی بر روی داربست های هوشمند کاراگینان (Carr) و ترکیب کاراگینان و موسیلاژ دانه به (Carr:Quc) به منظور تولید گوشت آزمایشگاهی می­باشد. در این پژوهش، دو هیدروژل کاپاکاراگینان با غلظت 5/1% و کاپاکاراگینان و موسیلاژ دانه به با نسبت 1:1 و غلظت نهایی 5/1% با کمک محلول کلرید پتاسیم 5% تشکیل شدند. سپس توانایی پاسخ­دهی این دو داربست به تغییر pH محیط مورد ارزیابی قرار گرفت و زنده­مانی رده سلولی C2C12 در pH 4/7 و در هنگام تغییر pH از 4/7 به 5/5 بررسی شد. بررسی تغییر تورم با تغییر pH محیط نشان داد که برای داربست Carr بیشترین میزان تورم در pH 5 و برابر با %145 به دست آمد. بیشترین میزان تورم برای داربست Carr:Quc نیز در pH 5 و به میزان %428 مشاهده شد. هم­چنین تغییر تورم داربست­ها با تغییر pH از 4/7 به 5/5 ارزیابی شد. داربست Carr هیچ تغییر تورمی در زمان­های مورد مطالعه نشان نداد در حالی­که تغییر تورم داربست Carr:Quc بعد از قرار گرفتن در pH 5/5 به مدت 30، 45، 60، 180 و 360 دقیقه نسبت به pH 4/7 تفاوت معنی­داری در سطح 05/0 نشان داد. ارزیابی زنده­مانی سلول­های C2C12 نیز بر روی داربست Carr:Quc در شرایط نرمال و تغییر pH از 4/7 به 5/5 نشان داد که زنده­مانی سلول­ها در شرایط نرمال بیشتر بود. بررسی زنده­مانی و رشد سلول­ها در داربست Carr:Quc به مدت 15 روز نشان داد که داربست مورد نظر سمیتی اعمال نکرد و سلول­ها زنده­مانی خود را در طول کشت حفظ کرده و در روزهای 14 و 15 کشت، تمایل به تشکیل اسفروئید نشان دادند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The potential of smart scaffolds containing quince seed mucilage and kappa-carrageenan for cell culture ‎under normal physiologic conditions and varying pH levels

نویسندگان English

Neda Farhadi 1
Nafiseh Soltanizadeh 1
Mohsen Rabbani 2
Elahe Masaeli 3
1 Isfahan University of Technology
2 University of Isfahan
3 Royan Institute for Biotechnology
چکیده English

The purpose of this study is to investigate the ability of smart scaffolds of Kappa-carrageenan (Carr) and the combination of Kappa-carrageenan and quince seed mucilage (Carr:Quc) to support C2C12 viability and growth for cultured meat production. Carr and Carr:Quc with a final concentration of 1.5% (v/w) were developed using a 5% potassium chloride solution. The capability of the scaffolds to respond to the pH change of the environment was evaluated, and the viability of C2C12 at normal pH (7.4) and varying pH levels (7.4-5.5) was assessed. The evaluation of swelling changes with varying pH (pH 1-7) showed that for the Carr scaffold, the highest swelling was observed at pH 5, reaching 145%, which showed a significant difference compared to swelling at other pH levels (p < 0.05). The highest swelling for the Carr:Quc scaffold was also observed at pH 5, reaching 428%, with a significant difference compared to swelling at other pH levels (p < 0.05). Moreover, the change in the swelling behavior of the scaffolds was evaluated by changing the pH from 7.4 to 5.5. Carr did not show any swelling change, while Carr:Quc demonstrated a significant change in swelling after exposure to pH 5.5 for 30, 45, 60, 180, and 360 min. On Carr:Quc, C2C12 showed higher viability in normal conditions compared to varying pH levels from 7.4 to 5.5. Furthermore, after culturing on Carr:Quc, C2C12 maintained their viability throughout the culture period for 15 days at pH 7.4 and showed the potential for spheroid formation. The findings of this study could pave the way for the design of scaffolds made of edible biopolymers to facilitate tissue engineering of cultured meat

کلیدواژه‌ها English

Smart Scaffold
Kappa-carrageenan
Quince Seed mucilage
pH change
Cell Viability.‎
‎1- Ben-Arye, T., Shandalov, Y., Ben-Shaul, S., Landau, S., Zagury, Y., Ianovici, I., Lavon, N., & Levenberg, S. ‎‎(2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle ‎tissue for cell-based meat. Nature Food, 1(4), 210–220. https://doi.org/10.1038/s43016-020-0046-5‎
‎2- Kumar, P., Sharma, N., Sharma, S., Mehta, N., Kumar Verma, A., Chemmalar, S., & Qurni Sazili, A. (2021). In-‎vitro meat: a promising solution for sustainability of meat sector. Journal of Animal Science and ‎Technology, 63(4), 693–724. https://doi.org/10.5187/jast.2021.e85‎
‎3- Bhat, Z. F., & Fayaz, H. (2011). Prospectus of cultured meat - Advancing meat alternatives. In Journal of Food ‎Science and Technology (Vol. 48, Issue 2, pp. 125–140). https://doi.org/10.1007/s13197-010-0198-7‎
‎4- Zhang, K., Wang, S., Zhou, C., Cheng, L., Goa, X., Xie, X., Sun, J., Wang, H., Weir, M., Reynold, M., & Zhang, ‎N. (2023). Advanced smart biomaterials and constructs for hard tissue engineering and regeneration, bone ‎research, 6(31). https://www.nature.com/articles/s41413-018-0032-9#citeas‎
‎5- Ashraf, M. U., Hussain, M. A., Muhammad, G., Haseeb, M. T., Bashir, S., Hussain, S. Z., & Hussain, I. (2017). ‎A superporous and superabsorbent glucuronoxylan hydrogel from quince (Cydonia oblanga): Stimuli ‎responsive swelling, on-off switching and drug release. International Journal of Biological Macromolecules, ‎‎95, 138–144. https://doi.org/10.1016/j.ijbiomac.2016.11.057‎
‎6- Nagai, Y., Yokoi, H., Kaihara, K., & Naruse, K. (2012). The mechanical stimulation of cells in 3D culture ‎within a self-assembling peptide hydrogel. Biomaterials, 33(4), 1044–1051. ‎https://doi.org/10.1016/j.biomaterials.2011.10.049‎
‎7- Tseng, L.-F., Mather, P. T., & Henderson, J. H. (2013). Shape-memory-actuated change in scaffold fiber ‎alignment directs stem cell morphology. Acta Biomaterialia, 9(11), 8790–8801. ‎https://doi.org/10.1016/j.actbio.2013.06.043‎
‎8- Khan, F., & Tanaka, M. (2018). Designing smart biomaterials for tissue engineering. International Journal of ‎Molecular Sciences, 19(1). https://doi.org/10.3390/ijms19010017‎
‎9- Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), ‎‎1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027‎
‎10- Li, X., Liu, X., Yu, Y., Qu, X., Feng, Q., Cui, F., & Watari, F. (2009). Recent patents on polymeric scaffolds ‎for tissue engineering. Recent Patents on Biomedical Engineering (Discontinued), 2(1), 65–72. ‎http://dx.doi.org/10.2174/1874764710902010065‎
‎11- Hezaveh, H., & Muhamad, I. I. (2013). Modification and swelling kinetic study of kappa-carrageenan-based ‎hydrogel for controlled release study. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 182–‎‎191. https://doi.org/10.1016/j.jtice.2012.10.011‎
‎12- Dafe, A., Etemadi, H., Zarredar, H., & Mahdavinia, G. R. (2017). Development of novel carboxymethyl ‎cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of ‎Biological Macromolecules, 97, 299–307. https://doi.org/10.1016/j.ijbiomac.2017.01.016‎
‎13- Santo, V. E., Frias, A. M., Carida, M., Cancedda, R., Gomes, M. E., Mano, J. F., & Reis, R. L. (2009). ‎Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering ‎applications. Biomacromolecules, 10(6), 1392–1401. https://pubs.acs.org/doi/10.1021/bm8014973‎
‎14- Demir, D. (2024). Potential use of extracted flax seed mucilage in the construction of macroporous cryo-‎scaffolds. Biomedical Materials, 19(5), 055002. https://doi.org/10.1088/1748-605x/ad5bad‎
‎15- Soukoulis, C., Gaiani, C., & Hoffmann, L. (2018). Plant seed mucilage as emerging biopolymer in food ‎industry applications. Current Opinion in Food Science, 22, 28–42. ‎https://doi.org/10.1016/j.cofs.2018.01.004‎
‎16- Ashraf, M. U., Hussain, M. A., Bashir, S., Haseeb, M. T., & Hussain, Z. (2018). Quince seed hydrogel ‎‎(glucuronoxylan): Evaluation of stimuli responsive sustained release oral drug delivery system and ‎biomedical properties. Journal of Drug Delivery Science and Technology, 45, 455–465. ‎https://doi.org/10.1016/j.jddst.2018.04.008‎
‎17- Jouki, M., Mortazavi, S. A., Yazdi, F. T., & Koocheki, A. (2014b). Optimization of extraction, antioxidant ‎activity and functional properties of quince seed mucilage by RSM. International Journal of Biological ‎Macromolecules, 66, 113–124. https://doi.org/10.1016/j.ijbiomac.2014.02.026‎
‎18- Jouki, M., Mortazavi, S. A., Yazdi, F. T., & Koocheki, A. (2014a). Characterization of antioxidant–‎antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers, 99, 537–‎‎546. https://doi.org/10.1016/j.carbpol.2013.08.077‎
‎19- Popa, E., Reis, R., & Gomes, M. (2012). Chondrogenic phenotype of different cells encapsulated in κ‐‎carrageenan hydrogels for cartilage regeneration strategies. Biotechnology and Applied Biochemistry, 59(2), ‎‎132–141. https://doi.org/10.1002/bab.1007‎
‎20- Haghniaz, R., Ankit Gangrade, A., Montazerian, H., Zarei, F., Menekse Ermis, M., Li, Z., Du, Y., Khosravi, S., ‎Barros, N., Mandal, K., Rashad, A., Zehtabi, F., Li, J., Dokmeci, M., Kim, H., Khademhosseini, A., & ‎Yangzhi, Z. (2023). An All-In-One Transient Theranostic Platform for Intelligent Management of ‎Hemorrhage, Advanced Science, 10, 2301406. https://doi.org/10.1002/advs.202301406‎
‎21- Anowar H. Khan, A., Zhou, S., Moe, M., Ortega Quesada, B., Bajgiran, K., Lassiter, H., & Melvin, A. (2022). ‎Generation of 3D Spheroids Using a Thiol–Acrylate Hydrogel Scaffold to Study Endocrine Response in ER+ ‎Breast Cancer, Biomaterials Science & Engineering, 8, 9. ‎https://pubs.acs.org/doi/10.1021/acsbiomaterials.2c00491‎
‎22- 20- Lohani, A., Singh, G., Bhattacharya, S. S., Hegde, R. R., & Verma, A. (2016). Tailored-interpenetrating ‎polymer network beads of κ-carrageenan and sodium carboxymethyl cellulose for controlled drug delivery. ‎Journal of Drug Delivery Science and Technology, 31, 53–64. https://doi.org/10.1016/j.jddst.2015.11.005‎
‎23- You, J.-O., Rafat, M., Almeda, D., Maldonado, N., Guo, P., Nabzdyk, C. S., Chun, M., LoGerfo, F. W., ‎Hutchinson, J. W., & Pradhan-Nabzdyk, L. K. (2015). pH-responsive scaffolds generate a pro-healing ‎response. Biomaterials, 57, 22–32. https://doi.org/10.1016/j.biomaterials.2015.04.011‎
‎24- Stricker, J., Falzone, T., & Gardel, M. L. (2010). Mechanics of the F-actin cytoskeleton. Journal of ‎Biomechanics, 43(1), 9–14. https://doi.org/10.1016/j.jbiomech.2009.09.003‎
‎25- Ryu, N.-E., Lee, S.-H., & Park, H. (2019). Spheroid culture system methods and applications for mesenchymal ‎stem cells. Cells, 8(12), 1620. https://doi.org/10.3390/cells8121620‎
‎26- Zhang, K., Yan, S., Li, G., Cui, L., & Yin, J. (2015). In-situ birth of MSCs multicellular spheroids in poly (L-‎glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials, 71, 24–34. ‎https://doi.org/10.1016/j.biomaterials.2015.08.037‎
‎27- Italo Rodrigo Calori, I., Rodrigues Alves, S., Bi, H., & Claudio Tedesco, A. (2022). Type-I ‎Collagen/Collagenase Modulates the 3D Structure and Behavior of Glioblastoma Spheroid Models. Applied ‎Bio Materials, 5, 2. https://pubs.acs.org/doi/10.1021/acsabm.1c01138‎
‎28- Polez, R., Huynh, N., Pridgeon, C., Valle-Deldago, J., Harjumaki, R., & Osterberg, M. (2024). Insights into ‎spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques, Materials ‎Today Bio, 26, 1010165. https://doi.org/10.1016/j.mtbio.2024.101065‎
‎29- Shim, H., Kim, Y., Park, K., Park H., Moo Hu, K., & Kang, S. (2024). Enhancing cartilage regeneration ‎through spheroid culture and hyaluronic acid microparticles: A promising approach for tissue engineering. ‎Carbohydrate Polymers, 323, 121734. https://doi.org/10.1016/j.carbpol.2023.121734‎
‎30- Cui, X., Hartanto, Y., & Zhang, H. (2017). Advances in multicellular spheroids formation. Journal of the Royal ‎Society Interface, 14(127), 20160877. https://doi.org/10.1098/rsif.2016.0877‎
‎31- Su, C., Chuah, Y. J., Ong, H. B., Tay, H. M., Dalan, R., & Hou, H. W. (2021). A facile and scalable hydrogel ‎patterning method for microfluidic 3D cell culture and spheroid-in-gel culture array. Biosensors, 11(12), ‎‎509. https://doi.org/10.3390/bios11120509‎