بررسی ویژگی‌های پکتین استخراج شده از کنجاله کلزا در روش‌ هیدرولیز آنزیمی با استفاده از استخراج به کمک مایکروویو

نویسندگان
آزمایشگاه مهندسی فرآیندهای بیوتکنولوژی، گروه علوم و صنایع غذایی، دانشگده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران
چکیده
پکتین به عنوان هیدروکلوئید که در دیواره سلولی گیاهان قرار دارد می‌تواند یک محصول ثانویه در فراوری صنایع غذایی باشد. کلزا پس از روغنکشی دارای مقادیر بالایی از پکتین است. برای استخراج پکتین از کنجاله کلزا از روش‌ مقایسه استخراج هیدرولیز آنزیمی با حضور و عدم حضور به کمک مایکروویو (با قدرت 600 وات در سه زمان ، 1، 3 و 5 دقیقه) مورد استفاده قرار گرفت. بررسی تأثیر زمان تابش مایکروویو بر عملکرد استخراج و ویژگی‌های فیزیکوشیمیایی و رئولوژیکی پکتین استخراج‌شده انجام شد. ویژگی‌های فیزیکی، رئولوژیکی و شیمیایی نشان دادند که حضور فرآیند مایکروویو منجر شد تا خواص عملکردی پکتین استخراج شده بهبود یابد و فرآیند استخراج را تسهیل کرد (50/0 >p). بالاترین بازده استخراج پکتین 1/9 % (وزنی/وزنی) در 5 دقیقه تابش پرتو با قدرت 600 وات در فرایند کمکی مایکروویو با قدرت 600 وات بود. این فرآیند کمکی بر درجه استری شدن و محتوای اسید گالاکترونیک پکتین تأثیر گذاشت تا توانایی تشکیل ژل در حضور مقادیر قند کم را داشته باشد و در محصولات رژیمی مناسب باشد. محتوای اسید گالاکترونیک در تمام نمونه ها بالاتر از 60% بود که نشان از ظرفیت تشکیل ژل بالا است. پکتین استخراجی در زمان 5 دقیقه تابش مایکروویو با قدرت 600 وات بهترین ویژگی‌ها را با حداکثر محتوای اسید گالاکترونیک (51/76 %)، بالاترین فعالیت امولسیون کنندگی (01/58%) و پایداری امولسیون (03/95%) را ارائه داد. حضور فرآیند کمکی مایکروویو مقادیر کشش سطحی محلول آبی پکتین را کاهش داد (11/43% در 5 دقیقه تابش) و ظرفیت ایجاد کف پکتین (بیشترین مقدار در 5 دقیقه تابش 13/84%) آن را تحت تأثیر قرار داده، بهبود بخشید. تابش پرتو در طول زمان مایکروویو باعث تغییرات قابل‌توجهی در ویژگی‌های پکتین، مانند ویسکوزیته ذاتی، میانگین ویسکوزیته، ظرفیت نگهداری آب شد تا ژلی با کیفیت بالاتر را تشکیل دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the characteristics of pectin extracted from rapeseed meal in enzymatic hydrolysis method using Microwave-Assisted Extraction

نویسندگان English

Nima Mobahi
Seyed Hadi Razavi
Zahra Emam-Djomeh
Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agricultural
چکیده English

Pectin as a hydrocolloid located in the cell wall of plants can be a secondary product in food industry processing. Canola after de-oiling has high amounts of pectin. To extract pectin from rapeseed meal, the comparison method of enzymatic hydrolysis extraction was used with and without the presence of microwaves (with power of 600 W at three times 1, 3, and 5 minutes). The effect of microwave irradiation time on extraction performance and physicochemical and mechanical characteristics of extracted pectin was investigated. Physical, mechanical, and chemical characteristics showed that the presence of the microwave process improved the functional properties of the extracted pectin and facilitated the extraction process (p<0.5). The highest yield of pectin extraction was 9.1% (W/W) in 5 minutes of radiation with 600 W power in the microwave-assisted process with 600 W power. This auxiliary process affected the degree of esterification and galacturonic acid content of pectin so that it can form a gel in the presence of low sugar amounts and is suitable in diet products. The content of galacturonic acid in all samples was higher than 60%, which indicates a high gel formation capacity. Pectin extracted during 5 minutes of microwave irradiation with 600 W power presented the best characteristics with the maximum content of galacturonic acid (76.51%), the highest emulsifying activity (58.01%), and emulsion stability (95.03%). The presence of the microwave-assisted process reduced the surface tension values ​​of the pectin aqueous solution (43.11% in 5 minutes of irradiation) and affected and improved the foaming capacity of pectin (the highest value in 5 minutes of irradiation was 84.13%). Irradiation during microwave time caused significant changes in pectin properties, such as intrinsic viscosity, mean viscosity, and water holding capacity, to form a higher-quality gel.

کلیدواژه‌ها English

Rapeseed meal
Pectin
Enzymatic Hydrolysis (EH)
microwave-assisted extraction (MAE)
Extraction yield
Emulsifying activity
Gharibzahedi, S.M.T., B. Smith, and Y. Guo, Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. International Journal of Biological Macromolecules, 2019. 136: p. 275-283.
[2] Gharibzahedi, S.M.T., B. Smith, and Y. Guo, Ultrasound-microwave assisted extraction of pectin from fig (Ficus carica L.) skin: Optimization, characterization and bioactivity. Carbohydrate polymers, 2019. 222: p. 114992.
[3] Jeong, H.-S., et al., Effects of combination processes on the extraction of pectins from rapeseed cake (Brassica napus L.). Food chemistry, 2013. 139(1-4): p. 9-15.
[4] Inngjerdingen, K.T., et al., Immunological and structural properties of a pectic polymer from Glinus oppositifolius. Glycobiology, 2007. 17(12): p. 1299-1310.
[5] Joudaki, H., et al., A practical optimization on salt/high-methoxyl pectin interaction to design a stable formulation for Doogh. Carbohydrate polymers, 2013. 97(2): p. 376-383.
[6] Joudaki, H., et al., Scrutinizing the different pectin types on stability of an Iranian traditional drink “Doogh”. International journal of biological macromolecules, 2013. 60: p. 375-382.
[7] Madziva, H., K. Kailasapathy, and M. Phillips, Alginate–pectin microcapsules as a potential for folic acid delivery in foods. Journal of Microencapsulation, 2005. 22(4): p. 343-351.
[8] Chandel, V., et al., Current advancements in pectin: Extraction, properties and multifunctional applications. Foods, 2022. 11(17): p. 2683.
[9] Mobahi, N., The effect of the presence of Lactobacillus acidophilus, Bifidobacterium and Streptococcus thermophilus on physicochemical, colorimetric and rheological properties of probiotic dark chocolate. Journal of food science and technology (Iran), 2022. 18(119): p. 115-131.
[10] Mobahi, N., Study of survival of probiotic strains of Lactobacillus acidophilus, Bifidobacterium and Streptococcus thermophilus and their effect on sensory properties of probiotic dark chocolate during storage at room temperature and refrigerated for 180 days. Journal of food science and technology (Iran), 2022. 18(121): p. 185-201.
[11] McVetty, P., et al., Grain production and consumption: Oilseeds in North America. 2016.
[12] Jeong, H.-S., et al., Optimization of enzymatic hydrolysis conditions for extraction of pectin from rapeseed cake (Brassica napus L.) using commercial enzymes. Food chemistry, 2014. 157: p. 332-338.
[13] Kaushik, P., et al., Preparation, characterization and functional properties of flax seed protein isolate. Food chemistry, 2016. 197: p. 212-220.
[14] Forouhar, A., et al., The effect of ultrasound pretreatment on pectin extraction from watermelon rind using microwave-assisted extraction. Applied Sciences, 2023. 13(9): p. 5558.
[15] Brown, W. and M. Marques, 14 The United States Pharmacopeia/National Formulary, in Generic drug product development: solid oral dosage forms. 2013, CRC Press Boca Raton p. p. 319.
[16] Blumenkrantz, N. and G. Asboe-Hansen, New method for quantitative determination of uronic acids. Analytical biochemistry, 1973. 54(2): p. 484-489.
[17] Xu, M., et al., Polysaccharides from sunflower stalk pith: Chemical, structural and functional characterization. Food Hydrocolloids, 2020. 100: p. 105082.
[18] Rostami, H. and S.M.T. Gharibzahedi, Microwave-assisted extraction of jujube polysaccharide: optimization, purification and functional characterization. Carbohydrate polymers, 2016. 143: p. 100-107.
[19] Yamaguchi, T., et al., HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl. Bioscience, biotechnology, and biochemistry, 1998. 62(6): p. 1201-1204.
[20] Thambiraj, S.R., et al., Antioxidant activities and characterisation of polysaccharides isolated from the seeds of Lupinus angustifolius. Industrial Crops and Products, 2015. 74: p. 950-956.
[21] Kratchanova, M., E. Pavlova, and I. Panchev, The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydrate polymers, 2004. 56(2): p. 181-185.
[22] Jiang, L.N., et al., Comparisons of microwave-assisted and conventional heating extraction of pectin from seed watermelon peel. Advanced Materials Research, 2012. 550: p. 1801-1806.
[23] Wai, W.W., A.F. Alkarkhi, and A.M. Easa, Effect of extraction conditions on yield and degree of esterification of durian rind pectin: An experimental design. Food and Bioproducts Processing, 2010. 88(2-3): p. 209-214.
[24] Sundar Raj, A., et al., A Review on Pectin: Chemistry due to General Properties of Pectin and its Pharmaceutical Uses. 1: 550 doi: 10.4172/scientificreports. 550 Page 2 of 4 Volume 1• Issue 12• 2012 in a chain-like configuration; this corresponds to average molecular weights from about 50,000 to 150,000 daltons. Large differences may exist between samples and between molecules within a sample and estimates may differ between methods of measurement, 2012.
[25] Fraeye, I., et al., Influence of intrinsic and extrinsic factors on rheology of pectin–calcium gels. Food Hydrocolloids, 2009. 23(8): p. 2069-2077.
[26] Lara-Espinoza, C., et al., Pectin and pectin-based composite materials: Beyond food texture. Molecules, 2018. 23(4): p. 942.
[27] Iglesias, M.T. and J.E. Lozano, Extraction and characterization of sunflower pectin. Journal of food engineering, 2004. 62(3): p. 215-223.
[28] Willats, W.G., J.P. Knox, and J.D. Mikkelsen, Pectin: new insights into an old polymer are starting to gel. Trends in food science & technology, 2006. 17(3): p. 97-104.
[29] Garna, H., et al., New method for a two-step hydrolysis and chromatographic analysis of pectin neutral sugar chains. Journal of agricultural and food chemistry, 2004. 52(15): p. 4652-4659.
[30] Liew, S.Q., et al., Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. International journal of biological macromolecules, 2016. 93: p. 426-435.
[31] Mitura, S., A. Sionkowska, and A. Jaiswal, Biopolymers for hydrogels in cosmetics. Journal of Materials Science: Materials in Medicine, 2020. 31: p. 1-14.
[32] Schmidt, U., et al., Effect of molecular weight reduction, acetylation and esterification on the emulsification properties of citrus pectin. Food biophysics, 2015. 10: p. 217-227.
[33] Sánchez, C.C. and J.M.R. Patino, Interfacial, foaming and emulsifying characteristics of sodium caseinate as influenced by protein concentration in solution. Food hydrocolloids, 2005. 19(3): p. 407-416.
[34] McClements, D.J., Food emulsions: principles, practices, and techniques. 2004: CRC press.
[35] Jun, H.-I., et al., Characterization of the pectic polysaccharides from pumpkin peel. LWT-Food Science and Technology, 2006. 39(5): p. 554-561.
[36] Chen, Y., et al., Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. International journal of biological macromolecules, 2014. 70: p. 498-505.
[37] Gharibzahedi, S.M.T. and S. Mohammadnabi, Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. International journal of biological macromolecules, 2017. 95: p. 769-777.
[38] Gharibzahedi, S.M.T., S.H. Razavi, and S.M. Mousavi, Comparison of antioxidant and free radical scavenging activities of biocolorant synthesized by Dietzia natronolimnaea HS-1 cells grown in batch, fed-batch and continuous cultures. Industrial crops and products, 2013. 49: p. 10-16.
[39] Mzoughi, Z., et al., Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves: Characterization, antioxidant, anti-inflammatory and analgesic activities. Carbohydrate polymers, 2018. 185: p. 127-137.