[1] Hoolihan, J.P., Anandh, P., Herwerden, L.V. (2006). Mitochondrial DNA analysis of narrow barred Spanish ackerel (Scomberomorus commerson) suggests a single genetic stock in the ROPME sea area (Arabian Gulf, Gulf of Oman and Arabian Sea). ICES Journal of Marine Science., 63, 1066 - 1074.
[2] Arora, M., Mangipudi, P., & Dutta, M. K. (2022). A low-cost imaging framework for freshness evaluation from multifocal fish tissues. Journal of Food Engineering., 314, 110777.
[3] Omwange, K. A., Saito, Y., Zichen, H., Khaliduzzaman, A., Kuramoto, M., Ogawa, Y., Kondo, N., & Suzuki, T. (2021). Evaluating Japanese dace (Tribolodon hakonensis) fish freshness during storage using multispectral images from visible and UV excited fluorescence. LWT., 151, 112207.
[4] Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2014). Comparative studies on properties and antioxidative activity of fish skin gelatin films incorporated with essential oils from various sources. International Aquatic Research., 6, 1-12.
[5] Ghiasi, F., Golmakani, M.-T., Eskandari, M. H., & Hosseini, S. M. H. (2020). A new approach in the hydrophobic modification of polysaccharide-based edible films using structured oil nanoparticles. Industrial Crops and Products., 154, 112679.
[6] Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research.
[7] Chandrasekhar, J., Madhusudhan, M., & Raghavarao, K. (2012). Extraction of anthocyanins from red cabbage and purification using adsorption. Food and bioproducts processing., 90(4), 615-623.
[8] Andrade, J. K. S., Denadai, M., de Oliveira, C. S., Nunes, M. L., & Narain, N. (2017). Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Research International., 101, 129-138.
[9] Ravindran, R., & Jaiswal, A. K. (2016). Exploitation of food industry waste for high-value products. Trends in biotechnology., 34(1), 58-69.
[10] Despoudi, S., Bucatariu, C., Otles, S., & Kartal, C. (2021). Food waste management, valorization, and sustainability in the food industry. In Food waste recovery (pp. 3-19). Elsevier.
[11] Fernandes, F., Pereira, E., Círić, A., Soković, M., Calhelha, R. C., Barros, L., & Ferreira, I. C. (2019). Ocimum basilicum var. purpurascens leaves (red rubin basil): A source of bioactive compounds and natural pigments for the food industry. Food & Function., 10(6), 3161-3171.
[12] Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. International Journal of Food Properties., 23(1), 1961-1970.
[13] Gul, K., Yousuf, B., Singh, A., Singh, P., & Wani, A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food—A review. Bioactive Carbohydrates and Dietary Fibre., 6(1), 24-30.
[14] Sharif, M. K., Butt, M. S., Anjum, F. M., & Khan, S. H. (2014). Rice bran: a novel functional ingredient. Critical reviews in food science and nutrition., 54(6), 807-816.
[15] Aswathanarayan, J. B., & Vittal, R. R. (2019). Nanoemulsions and their potential applications in food industry. Frontiers in Sustainable Food Systems., 3, 95.
[16] Ozogul, Y., Karsli, G. T., Durmuş, M., Yazgan, H., Oztop, H. M., McClements, D. J., & Ozogul, F. (2022). Recent developments in industrial applications of nanoemulsions. Advances in Colloid and Interface Science, 304., 102685.
[17] Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids., 89, 674-681.
[18] Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A.-M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate polymers., 238, 116178.
[19] López-Torres, J., Hernández-Caba, K., Cervantes-Ganoza, L., Ladera-Castañeda, M., Martínez-Campos, R., Solís-Dante, F., Briceño-Vergel, G., & Cayo-Rojas, C. (2023). Microleakage of Class II Bulk-Fill Resin Composite Restorations Cured with Light-Emitting Diode versus Quartz Tungsten-Halogen Light: An In Vitro Study in Human Teeth. Biomedicines, 11(2)., 556.
[20] Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., & Liu, X. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International journal of biological macromolecules., 143, 359-372.
[21] Wen, Y., Niu, M., Zhang, B., Zhao, S., & Xiong, S. (2017). Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT., 75, 344-351.
[22] Liu, Y., Zhang, H., Yi, C., Quan, K., & Lin, B. (2021). Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chemistry., 342, 128352.
[23] Kim, J. E., Kim, S. M., Lee, K. Y., Kim, K. D., Lee, J. H., Jang, E. H., & Ham, J. G. (2022). Genetic Characteristics and Anthocyanin Content of Basil (Ocimum basilicum L.). Proceedings of the Korean Society of Crop Science Conference,
[24] Ahmed, A. F., Attia, F. A., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3)., 299-305.
[25] Teofilović, B., Grujić-Letić, N., Goločorbin-Kon, S., Stojanović, S., Vastag, G., & Gadžurić, S. (2017). Experimental and chemometric study of antioxidant capacity of basil (Ocimum basilicum) extracts. Industrial Crops and Products, 100., 176-182.
[26] Guan, Q., & Wang, M. (2021). Core-shell structured theranostics. Nano Life, 11(04), 214100. 4.
[27] Yang, Y., Yu, X., Zhu, Y., Zeng, Y., Fang, C., Liu, Y., Hu, S., Ge, Y., & Jiang, W. (2022). Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chemistry., 393, 133342.
[28] Liu, D., Cui, Z., Shang, M., & Zhong, Y. (2021). A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packaging and Shelf Life., 28, 100641.
[29] Bahrami Feridoni, S., & Khademi Shurmasti, D. (2020). Effect of the nanoencapsulated sour tea (Hibiscus sabdariffa L.) extract with carboxymethylcellulose on quality and shelf life of chicken nugget. Food Science & Nutrition, 8(7)., 3704-3715.
[30] Tabari, M. (2018). Characterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles. Nanomedicine Research Journal., 3(1), 25-30.
[31] Silva, O. A., Pellá, M. G., Pellá, M. G., Caetano, J., Simões, M. R., Bittencourt, P. R., & Dragunski, D. C. (2019). Synthesis and characterization of a low solubility edible film based on native cassava starch. International journal of biological macromolecules., 128, 290-296.
[32] Acevedo-Fani, A., Salvia-Trujillo, L., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Modulating biopolymer electrical charge to optimize the assembly of edible multilayer nanofilms by the layer-by-layer technique. Biomacromolecules, 16(9)., 2895-2903.
[33]Zhao, R., Guan, W., Zhou, X., Lao, M., & Cai, L. (2022). The physiochemical and preservation properties of anthocyanidin/chitosan nanocomposite-based edible films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT., 153, 112506.
[34] Umaraw, P., Munekata, P. E., Verma, A. K., Barba, F. J., Singh, V., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science & Technology., 98, 10-24.
[35] Ekrami, M., Roshani-Dehlaghi, N., Ekrami, A., Shakouri, M., & Emam-Djomeh, Z. (2022). pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness. Chemistry, 4(4)., 1360-1381.
[36] Wang, P., Liu, J., Zhuang, Y., & Fei, P. (2022). Acylating blueberry anthocyanins with fatty acids: Improvement of their lipid solubility and antioxidant activities. Food Chemistry: X,. 100420,15.
[37] Homayounpour, P., Shariatifar, N., & Alizadeh‐Sani, M. (2021). Development of nanochitosan‐based active packaging films containing free and nanoliposome caraway (Carum carvi. L) seed extract. Food Science & Nutrition, 9(1)., 553-563.
[38] Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control., 91, 185-192.
[39] Johnson, J. B., El Orche, A., & Naiker, M. (2022). Prediction of anthocyanin content and variety in plum extracts using ATR-FTIR spectroscopy and chemometrics. Vibrational Spectroscopy., 121, 103406.
[40] Khezerlou, A., Alizadeh Sani, M., Tavassoli, M., Abedi-Firoozjah, R., Ehsani, A., & McClements, D. J. (2023). Halochromic (pH-Responsive) indicators based on natural anthocyanins for monitoring fish freshness/spoilage. Journal of Composites Science,. 143, (4),7.
[41] Nogueira, G. F., Meneghetti, B. B., Soares, I. H. B. T., Soares, C. T., Bevilaqua, G., Fakhouri, F. M., & de Oliveira, R. A. (2024). Multipurpose arrowroot starch films with anthocyanin-rich grape pomace extract: Color migration for food simulants and monitoring the freshness of fish meat. International journal of biological macromolecules, 265, 130934.
[42] Koshy, R. R., Reghunadhan, A., Mary, S. K., Thomas, K., Ajish, K., Thomas, S., & Pothen, L. A. (2022). Intelligent pH-sensitive films from whole arrowroot powder and soy protein isolate incorporating red cabbage anthocyanin: Monitoring freshness of shrimps and ammonia in fish farming ponds. New Journal of Chemistry., 46(19), 9036-9047
[43] Tena, N., Martín, J., & Asuero, A. G. (2020). State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants., 9(5), 451.
[44] Garcia, C., & Blesso, C. N. (2021). Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radical Biology and Medicine., 172, 152-166.
[45] Flanigan, P. M., & Niemeyer, E. D. (2014). Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chemistry., 164, 518-526.
[46] Chua, L. S., Abd Wahab, N. S., & Soo, J. (2023). Water soluble phenolics, flavonoids and anthocyanins extracted from jaboticaba berries using maceration with ultrasonic pretreatment. Food Chemistry Advances., 3, 100387.
[47] Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., & Madani, K. (2013). Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products, 49., 668-674.
[48] Peanparkdee, M., Patrawart, J., & Iwamoto, S. (2019). Effect of extraction conditions on phenolic content, anthocyanin content and antioxidant activity of bran extracts from Thai rice cultivars. Journal of cereal science., 86, 86-91.
[49] Wang, W., Jung, J., Tomasino, E., & Zhao, Y. (2016). Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT-Food Science and Technology., 72, 229-238.
[50] Samad, M. A., Hashim, S. H., Simarani, K., & Yaacob, J. S. (2016). Antibacterial properties and effects of fruit chilling and extract storage on antioxidant activity, total phenolic and anthocyanin content of four date palm (Phoenix dactylifera) cultivars. Molecules., 21(4), 419.
[51] Bendokas, V., Stanys, V., Mažeikienė, I., Trumbeckaite, S., Baniene, R., & Liobikas, J. (2020). Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants., 9(9), 819.
[52] Turturică, M., Oancea, A. M., Râpeanu, G., & Bahrim, G. (2015). Anthocyanins: Naturally occuring fruit pigments with functional properties. The Annals of the University Dunarea De Jos of Galati. Fascicle VI-Food Technology., 39(1), 9-24.
[53] Gahruie, H. H., Mirzapour, A., Ghiasi, F., Eskandari, M. H., Moosavi-Nasab, M., & Hosseini, S. M. H. (2022). Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT., 153, 112422.
[54] Farooq, S., Shah, M. A., Siddiqui, M. W., Dar, B., Mir, S. A., & Ali, A. (2020). Recent trends in extraction techniques of anthocyanins from plant materials. Journal of Food Measurement and Characterization., 14, 3508-3519.
[55] Bhushan, B., Bibwe, B., Pal, A., Mahawar, M. K., Dagla, M. C., Yathish, K., Jat, B. S., Kumar, P., Aggarwal, S. K., & Singh, A. (2023). FTIR spectra, antioxidant capacity and degradation kinetics of maize anthocyanin extract under variable process conditions. Applied Food Research., 3(1), 100282.
[56] Türker, D. A., & Doğan, M. (2021). Application of deep eutectic solvents as a green and biodegradable media for extraction of anthocyanin from black carrots. LWT, 138, 110775.
[58] Shi, S., Xu, X., Feng, J., Ren, Y., Bai, X., & Xia, X. (2023). Preparation of NH3-and H2S-sensitive intelligent pH indicator film from sodium alginate/black soybean seed coat anthocyanins and its use in monitoring meat freshness. Food Packaging and Shelf Life., 35, 100994.
[59] Zhang, H., Li, S., Zheng, H., Han, Z., Lin, B., Wang, Y., Guo, X., Zhou, T., Zhang, H., & Wu, J. (2023). A visual color response test paper for the detection of hydrogen sulfide gas in the air. Molecules., 28(13), 5044.
[60] Ameri, M., Ajji, A., & Kessler, S. (2024). Characterization of a Food‐Safe Colorimetric Indicator Based on Black Rice Anthocyanin/PET Films for Visual Analysis of Fish Spoilage. Packaging Technology and Science.
[61] Ranjbar, M., Tabrizzad, M. H. A., Asadi, G., & Ahari, H. (2023). Investigating the microbial properties of sodium alginate/chitosan edible film containing red beetroot anthocyanin extract for smart packaging in chicken fillet as a pH indicator. Heliyon., 9(8).
[62] Bitencourt, C. M., Fávaro-Trindade, C. S., Sobral, P. J. d. A., & Carvalho, R. A. d. (2014). Gelatin-based films additivated with curcuma ethanol extract: Antioxidant activity and physical properties of films. Food Hydrocolloids., 40, 145-152.
[63] Rawdkuen, S., Faseha, A., Benjakul, S., & Kaewprachu, P. (2020). Application of anthocyanin as a color indicator in gelatin films. Food Bioscience., 36, 100603.
[64] Erna, K. H., Felicia, W. X. L., Vonnie, J. M., Rovina, K., Yin, K. W., & Nur’Aqilah, M. N. (2022). Synthesis and physicochemical characterization of polymer film-based anthocyanin and starch. Biosensors., 12(4), 211.
[65] Wang, S., Marcone, M., Barbut, S., & Lim, L. T. (2012). The impact of anthocyanin‐rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films. Journal of Food Science., 77(4), C497-C505.
[66]Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life., 26, 100550.
[67] Shivangi, S., Dorairaj, D., Negi, P. S., & Shetty, N. P. (2021). Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocolloids., 1.107046,21.
[68] Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2016). Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology., 9, 172-181.
[69] Roy, S., Kim, H.-J., & Rhim, J.-W. (2021). Effect of blended colorants of anthocyanin and shikonin on carboxymethyl cellulose/agar-based smart packaging film. International journal of biological macromolecules., 183, 305-315.
[70] Cheng, M., Yan, X., Cui, Y., Han, M., Wang, Y., Wang, J., Zhang, R., & Wang, X. (2022). Characterization and release kinetics study of active packaging films based on modified starch and red cabbage anthocyanin extract. Polymers., 14(6), 1214.
[71] Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019). Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids., 94, 80-92.
[72] de Oliveira Filho, J. G., Braga, A. R. C., de Oliveira, B. R., Gomes, F. P., Moreira, V. L., Pereira, V. A. C., & Egea, M. B. (2021). The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Research International., 142, 110202.
[73] Yan, J., Zhang, H., Yuan, M., Qin, Y., & Chen, H. (2022). Effects of anthocyanin-rich Kadsura coccinea extract on the physical, antioxidant, and pH-sensitive properties of biodegradable film. Food Biophysics., 17(3), 375-385.
[74] Sohany, M., Tawakkal, I. S. M. A., Ariffin, S. H., Shah, N. N. A. K., & Yusof, Y. A. (2021). Characterization of anthocyanin associated purple sweet potato starch and peel-based pH indicator films. Foods., 10(9), 2005.
[75] Merz, B., Capello, C., Leandro, G. C., Moritz, D. E., Monteiro, A. R., & Valencia, G. A. (2020). A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. International journal of biological macromolecules., 153, 625-632.
[76] Capello, C., Trevisol, T. C., Pelicioli, J., Terrazas, M. B., Monteiro, A. R., & Valencia, G. A. (2021). Preparation and characterization of colorimetric indicator films based on chitosan/polyvinyl alcohol and anthocyanins from agri-food wastes. Journal of Polymers and the Environment., 29, 1616-1629.
[77] Etxabide, A., Maté, J. I., & Kilmartin, P. A. (2021). Effect of curcumin, betanin and anthocyanin containing colourants addition on gelatin films properties for intelligent films development. Food Hydrocolloids., 115, 106593.
[78] Bojorges, H., Ríos‐Corripio, M., Hernández‐Cázares, A. S., Hidalgo‐Contreras, J. V., & Contreras‐Oliva, A. (2020). Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Science & Nutrition., 8(8), 4308-4319.
[79] Marrone, R., Smaldone, G., Ambrosio, R. L., Festa, R., Ceruso, M., Chianese, A., & Anastasio, A. (2021). Effect of beetroot (Beta vulgaris) extract on Black Angus burgers shelf life. Italian Journal of Food Safety., 10(1).
[80] You, P., Wang, L., Zhou, N., Yang, Y., & Pang, J. (2022). A pH-intelligent response fish packaging film: Konjac glucomannan/carboxymethyl cellulose/blackcurrant anthocyanin antibacterial composite film. International journal of biological macromolecules., 204, 386-396.
[81] Ganiari, S., Choulitoudi, E., & Oreopoulou, V. (2017). Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends in Food Science & Technology., 68, 70-82.
[82] Vlčko, T., Rathod, N. B., Kulawik, P., Ozogul, Y., & Ozogul, F. (2022). The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. In Advances in food and nutrition research (Vol. 102, pp. 275-339). Elsevier.
[83] Huang, S., Xiong, Y., Zou, Y., Dong, Q., Ding, F., Liu, X., & Li, H. (2019). A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids., 90, 198-205.
[84] You, S., Zhang, X., Wang, Y., Jin, Y., Wei, M., & Wang, X. (2022). Development of highly stable color indicator films based on κ-carrageenan, silver nanoparticle and red grape skin anthocyanin for marine fish freshness assessment. International journal of biological macromolecules., 216, 655-669.
[85] Ghorbani, M., Divsalar, E., Molaei, R., Ezati, P., Moradi, M., Tajik, H., & Abbaszadeh, M. (2021). A halochromic indicator based on polylactic acid and anthocyanins for visual freshness monitoring of minced meat, chicken fillet, shrimp, and fish roe. Innovative Food Science & Emerging Technologies., 74, 102864.
[86] Zhai, X., Zou, X., Shi, J., Huang, X., Sun, Z., Li, Z., Sun, Y., Li, Y., Wang, X., & Holmes, M. (2020). Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sensors and Actuators B: Chemical., 302, 127130.
[87] Sun, Y., Wen, J., Chen, Z., Qiu, S., Wang, Y., Yin, E., Li, H., & Liu, X. (2022). Non-destructive and rapid method for monitoring fish freshness of grass carp based on printable colorimetric paper sensor in modified atmosphere packaging. Food Analytical Methods., 1-11.
[88] Bekhit, A. E. D. A., Giteru, S. G., Holman, B. W., & Hopkins, D. L. (2021). Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health. Comprehensive Reviews in Food Science and Food Safety., 20(4), 3620-3666.
[89] Hui, X., Wan, Y., Dong, H., Peng, J., Wu, W., Yang, X., & He, Q. (2023). A promising insight into the inhibition of lipid oxidation, protein degradation and biogenic amine accumulation in postmortem fish: Functional glazing layers of modified bio-polymer. LWT., 177, 114575.
[90] Tahir, H. E., Hashim, S. B., Mahunu, G. K., Arslan, M., Jiyong, S., Mariod, A. A., Zhang, J., El-Seedi, H. R., Zhai, X., & Musa, T. H. (2022). Smart films fabricated from natural pigments for measurement of total volatile basic nitrogen (TVB-N) content of meat for freshness evaluation: A systematic review. Food Chemistry., 396, 133674.
[91] Arun, R., Shruthy, R., Preetha, R., & Sreejit, V. (2022). Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere., 291, 132786.
[92] Chaiyasut, C., Sivamaruthi, B. S., Pengkumsri, N., Sirilun, S., Peerajan, S., Chaiyasut, K., & Kesika, P. (2016). Anthocyanin profile and its antioxidant activity of widely used fruits, vegetables, and flowers in Thailand. Asian Journal of Pharmaceutical and Clinical Research., 9(6), 218-224.
93] Mary, S. K., Koshy, R. R., Daniel, J., Koshy, J. T., Pothen, L. A., & Thomas, S. (2020). Development of starch based intelligent films by incorporating anthocyanins of butterfly pea flower and TiO 2 and their applicability as freshness sensors for prawns during storage. RSC advances., 10(65), 39822-39830.
[94] Kanatt, S. R. (2020). Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packaging and Shelf Life., 24, 100506.
[95] Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2022). Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocolloids., 124, 107249.
[96] Yin, S., Zhang, Y., Zhang, X., Tao, K., & Li, G. (2023). High-strength collagen/delphinidin film incorporated with Vaccinium oxycoccus pigment for active and intelligent food packaging. Collagen and Leather., 5(1), 11.
[97] Łupina, K., Kowalczyk, D., Zięba, E., Kazimierczak, W., Mężyńska, M., Basiura-Cembala, M., & Wiącek, A. E. (2019). Edible films made from blends of gelatin and polysaccharide-based emulsifiers-A comparative study. Food Hydrocolloids., 96, 555-567.
[98] Tavakoli, S., Mubango, E., Tian, L., ŃDri, Y. B., Tan, Y., Hong, H., & Luo, Y. (2023). Novel intelligent films containing anthocyanin and phycocyanin for nondestructively tracing fish spoilage. Food Chemistry., 402, 134203.
[99] Zeng, F., Ye, Y., Liu, J., & Fei, P. (2023). Intelligent pH indicator composite film based on pectin/chitosan incorporated with black rice anthocyanins for meat freshness monitoring. Food Chemistry., X, 17, 100531.