بررسی عملکرد فیلم حاوی نشانگر رنگی ساقه ریحان بر پایه فیبر سبوس برنج به منظور پایش فساد ماهی شیر (Siganus commersonnii)

نویسندگان
1 دانشیارگروه علوم و صنایع غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
2 دانش‌آموخته کارشناسی ارشد گروه علوم و صنایع غذایی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
چکیده
تولید فیلم­های هوشمند شامل استفاده از شاخص­های رنگ پاسخگو به pH است که از منابع طبیعی به دست می­آیند. در راستای این روند، هدف در این پژوهش طراحی یک حسگر حاوی نشانگر رنگی ساقه ریحان بر پایه فیبر سبوس برنج به منظور تعیین کیفیت ماهی شیر(Siganus commersonnii) نگهداری شده به مدت 1 تا30 روز در دمای یخچال است. در این مطالعه از یک طرح فاکتوریل برای ارزیابی اثرات تیمارهای کنترل، 200 پی­پی­ام­، 400 پی­پی­ام و 600 پی­پی­ام استفاده شد. نتایج میکروسکوپ الکترونی روبشی نشان داد که عصاره آنتوسیانین ساقه ریحان باعث تغییرات در زنجیره‌های پلیمری و کاهش تخلخل ماتریس فیلم می‌شود. آنتوسانین با بسیاری از گروه­های هیدروکسی به عنوان پلاستی­سایزر ، حجم آزاد و تحرک ماکرومولکولی بین­ پلیمری به دلیل کاهش نیروهای بین مولکولی و چگالی کمتر افزایش داد و در نتیجه قابلیت کشش و انعطاف پذیری لایه­ها را بهبود ­بخشید. علاوه بر این، خواص شیمیایی (pH، تیوباربیتوریک اسید و ترکیبات نیتروژن) برای همه نمونه‌ها با افزایش زمان نگهداری تا روز 30 روند افزایشی داشت. در طیف سنجی FTIR، مشاهده شد که در روز صفر حذف کربنیل در عصاره آنتو سیانین ساقه ریحان باعث بزرگ­شدن باند هیدروکسیل و اسیدی­شدن محیط شده است. خواص آنتی­اکسیدانی عصاره آنتوسیانین ساقه ریحان در حضور ترکیبات فنلی از شروع واکنش­های زنجیره­ای رادیکال­های آزاد جلوگیری کرده است و باعث کاهش آن شد. فیلم حاوی نشانگر رنگی عصاره آنتوسیانین ساقه ریحان بر پایه فیبر سبوس برنج، پتانسیل افزایش کیفیت و ماندگاری فیله‌های ماهی شیر را دارد. عصاره آنتوسیانین ساقه ریحان و فیبر سبوس برنج می­تواند به عنوان یک شاخص مناسب برای بررسی تغییرات فساد در محصولات غذایی بسته­­بندی­شده باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating The Performance Of The Film Containing Basil Stem Color Iindicator Based On Rice Bbran Fiber To Monitor The Spoilage Of Lion Fish (Siganus commersonnii)

نویسندگان English

Sedigheh Yazdanpanah 1
akbar rostamifard 2
1 Associate Professor, Department of Food Science and Industry, Kazerun Branch, Islamic Azad University, Kazerun, Iran
2 Master's degree student in the Department of Food Sciences and Industries , Kazerun Branch, Islamic Azad University, Kazerun, Iran
چکیده English

The production of smart films includes the use of pH-responsive color indicators obtained from natural sources. In line with this trend, the aim of this research is to design a sensor containing a basil stem color indicator based on rice bran fiber to determine the quality of lionfish (Siganus commersonnii) kept for 1-30 days at refrigerator temperature. In this study, a factorial design was used to evaluate the effects of control treatments, 200 ppm, 400 ppm and 600 ppm. The results of scanning electron microscopy showed that basil stem anthocyanin extract causes changes in polymer chains and reduces film matrix porosity. Anthosanin with many hydroxy groups as a plasticizer increased the free volume and inter-polymeric macromolecular mobility due to the reduction of intermolecular forces and lower density, and as a result improved the stretchability and flexibility of the layers. In addition, the chemical properties (pH, thiobarbituric acid and nitrogen compounds) for all samples increased with increasing storage time up to 30 days. In FTIR spectroscopy, it was observed that on day zero, the removal of carbonyl in anthocyanin extract of basil stem increased the hydroxyl band and acidified the environment. Antioxidant properties of basil stem anthocyanin extract in the presence of phenolic compounds have prevented the initiation of free radical chain reactions and reduced it. The film containing the color indicator of anthocyanin extract of basil stem based on rice bran fiber has the potential to increase the quality and shelf life of lionfish fillets. Basil stem anthocyanin extract and rice bran fiber can be used as a suitable indicator to investigate changes in spoilage in packaged food products.

کلیدواژه‌ها English

Color marker
Edible film
Spoilage monitoring
[1] Hoolihan, J.P., Anandh, P., Herwerden, L.V. (2006). Mitochondrial DNA analysis of narrow barred Spanish ackerel (Scomberomorus commerson) suggests a single genetic stock in the ROPME sea area (Arabian Gulf, Gulf of Oman and Arabian Sea). ICES Journal of Marine Science., 63, 1066 - 1074.
[2] Arora, M., Mangipudi, P., & Dutta, M. K. (2022). A low-cost imaging framework for freshness evaluation from multifocal fish tissues. Journal of Food Engineering., 314, 110777.
[3] Omwange, K. A., Saito, Y., Zichen, H., Khaliduzzaman, A., Kuramoto, M., Ogawa, Y., Kondo, N., & Suzuki, T. (2021). Evaluating Japanese dace (Tribolodon hakonensis) fish freshness during storage using multispectral images from visible and UV excited fluorescence. LWT., 151, 112207.
[4] Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2014). Comparative studies on properties and antioxidative activity of fish skin gelatin films incorporated with essential oils from various sources. International Aquatic Research., 6, 1-12.
[5] Ghiasi, F., Golmakani, M.-T., Eskandari, M. H., & Hosseini, S. M. H. (2020). A new approach in the hydrophobic modification of polysaccharide-based edible films using structured oil nanoparticles. Industrial Crops and Products., 154, 112679.
[6] Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research.
[7] Chandrasekhar, J., Madhusudhan, M., & Raghavarao, K. (2012). Extraction of anthocyanins from red cabbage and purification using adsorption. Food and bioproducts processing., 90(4), 615-623.
[8] Andrade, J. K. S., Denadai, M., de Oliveira, C. S., Nunes, M. L., & Narain, N. (2017). Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Research International., 101, 129-138.
[9] Ravindran, R., & Jaiswal, A. K. (2016). Exploitation of food industry waste for high-value products. Trends in biotechnology., 34(1), 58-69.
[10] Despoudi, S., Bucatariu, C., Otles, S., & Kartal, C. (2021). Food waste management, valorization, and sustainability in the food industry. In Food waste recovery (pp. 3-19). Elsevier.
[11] Fernandes, F., Pereira, E., Círić, A., Soković, M., Calhelha, R. C., Barros, L., & Ferreira, I. C. (2019). Ocimum basilicum var. purpurascens leaves (red rubin basil): A source of bioactive compounds and natural pigments for the food industry. Food & Function., 10(6), 3161-3171.
[12] Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. International Journal of Food Properties., 23(1), 1961-1970.
[13] Gul, K., Yousuf, B., Singh, A., Singh, P., & Wani, A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food—A review. Bioactive Carbohydrates and Dietary Fibre., 6(1), 24-30.
[14] Sharif, M. K., Butt, M. S., Anjum, F. M., & Khan, S. H. (2014). Rice bran: a novel functional ingredient. Critical reviews in food science and nutrition., 54(6), 807-816.
[15] Aswathanarayan, J. B., & Vittal, R. R. (2019). Nanoemulsions and their potential applications in food industry. Frontiers in Sustainable Food Systems., 3, 95.
[16] Ozogul, Y., Karsli, G. T., Durmuş, M., Yazgan, H., Oztop, H. M., McClements, D. J., & Ozogul, F. (2022). Recent developments in industrial applications of nanoemulsions. Advances in Colloid and Interface Science, 304., 102685.
[17] Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids., 89, 674-681.
[18] Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A.-M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate polymers., 238, 116178.
[19] López-Torres, J., Hernández-Caba, K., Cervantes-Ganoza, L., Ladera-Castañeda, M., Martínez-Campos, R., Solís-Dante, F., Briceño-Vergel, G., & Cayo-Rojas, C. (2023). Microleakage of Class II Bulk-Fill Resin Composite Restorations Cured with Light-Emitting Diode versus Quartz Tungsten-Halogen Light: An In Vitro Study in Human Teeth. Biomedicines, 11(2)., 556.
[20] Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., & Liu, X. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International journal of biological macromolecules., 143, 359-372.
[21] Wen, Y., Niu, M., Zhang, B., Zhao, S., & Xiong, S. (2017). Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT., 75, 344-351.
[22] Liu, Y., Zhang, H., Yi, C., Quan, K., & Lin, B. (2021). Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chemistry., 342, 128352.
[23] Kim, J. E., Kim, S. M., Lee, K. Y., Kim, K. D., Lee, J. H., Jang, E. H., & Ham, J. G. (2022). Genetic Characteristics and Anthocyanin Content of Basil (Ocimum basilicum L.). Proceedings of the Korean Society of Crop Science Conference,
[24] Ahmed, A. F., Attia, F. A., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3)., 299-305.
[25] Teofilović, B., Grujić-Letić, N., Goločorbin-Kon, S., Stojanović, S., Vastag, G., & Gadžurić, S. (2017). Experimental and chemometric study of antioxidant capacity of basil (Ocimum basilicum) extracts. Industrial Crops and Products, 100., 176-182.
[26] Guan, Q., & Wang, M. (2021). Core-shell structured theranostics. Nano Life, 11(04), 214100. 4.
[27] Yang, Y., Yu, X., Zhu, Y., Zeng, Y., Fang, C., Liu, Y., Hu, S., Ge, Y., & Jiang, W. (2022). Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chemistry., 393, 133342.
[28] Liu, D., Cui, Z., Shang, M., & Zhong, Y. (2021). A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packaging and Shelf Life., 28, 100641.
[29] Bahrami Feridoni, S., & Khademi Shurmasti, D. (2020). Effect of the nanoencapsulated sour tea (Hibiscus sabdariffa L.) extract with carboxymethylcellulose on quality and shelf life of chicken nugget. Food Science & Nutrition, 8(7)., 3704-3715.
[30] Tabari, M. (2018). Characterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles. Nanomedicine Research Journal., 3(1), 25-30.
[31] Silva, O. A., Pellá, M. G., Pellá, M. G., Caetano, J., Simões, M. R., Bittencourt, P. R., & Dragunski, D. C. (2019). Synthesis and characterization of a low solubility edible film based on native cassava starch. International journal of biological macromolecules., 128, 290-296.
[32] Acevedo-Fani, A., Salvia-Trujillo, L., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Modulating biopolymer electrical charge to optimize the assembly of edible multilayer nanofilms by the layer-by-layer technique. Biomacromolecules, 16(9)., 2895-2903.
[33]Zhao, R., Guan, W., Zhou, X., Lao, M., & Cai, L. (2022). The physiochemical and preservation properties of anthocyanidin/chitosan nanocomposite-based edible films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT., 153, 112506.
[34] Umaraw, P., Munekata, P. E., Verma, A. K., Barba, F. J., Singh, V., Kumar, P., & Lorenzo, J. M. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science & Technology., 98, 10-24.
[35] Ekrami, M., Roshani-Dehlaghi, N., Ekrami, A., Shakouri, M., & Emam-Djomeh, Z. (2022). pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness. Chemistry, 4(4)., 1360-1381.
[36] Wang, P., Liu, J., Zhuang, Y., & Fei, P. (2022). Acylating blueberry anthocyanins with fatty acids: Improvement of their lipid solubility and antioxidant activities. Food Chemistry: X,. 100420,15.
[37] Homayounpour, P., Shariatifar, N., & Alizadeh‐Sani, M. (2021). Development of nanochitosan‐based active packaging films containing free and nanoliposome caraway (Carum carvi. L) seed extract. Food Science & Nutrition, 9(1)., 553-563.
[38] Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control., 91, 185-192.
[39] Johnson, J. B., El Orche, A., & Naiker, M. (2022). Prediction of anthocyanin content and variety in plum extracts using ATR-FTIR spectroscopy and chemometrics. Vibrational Spectroscopy., 121, 103406.
[40] Khezerlou, A., Alizadeh Sani, M., Tavassoli, M., Abedi-Firoozjah, R., Ehsani, A., & McClements, D. J. (2023). Halochromic (pH-Responsive) indicators based on natural anthocyanins for monitoring fish freshness/spoilage. Journal of Composites Science,. 143, (4),7.
[41] Nogueira, G. F., Meneghetti, B. B., Soares, I. H. B. T., Soares, C. T., Bevilaqua, G., Fakhouri, F. M., & de Oliveira, R. A. (2024). Multipurpose arrowroot starch films with anthocyanin-rich grape pomace extract: Color migration for food simulants and monitoring the freshness of fish meat. International journal of biological macromolecules, 265, 130934.
[42] Koshy, R. R., Reghunadhan, A., Mary, S. K., Thomas, K., Ajish, K., Thomas, S., & Pothen, L. A. (2022). Intelligent pH-sensitive films from whole arrowroot powder and soy protein isolate incorporating red cabbage anthocyanin: Monitoring freshness of shrimps and ammonia in fish farming ponds. New Journal of Chemistry., 46(19), 9036-9047
[43] Tena, N., Martín, J., & Asuero, A. G. (2020). State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants., 9(5), 451.
[44] Garcia, C., & Blesso, C. N. (2021). Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radical Biology and Medicine., 172, 152-166.
[45] Flanigan, P. M., & Niemeyer, E. D. (2014). Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chemistry., 164, 518-526.
[46] Chua, L. S., Abd Wahab, N. S., & Soo, J. (2023). Water soluble phenolics, flavonoids and anthocyanins extracted from jaboticaba berries using maceration with ultrasonic pretreatment. Food Chemistry Advances., 3, 100387.
[47] Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., & Madani, K. (2013). Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products, 49., 668-674.
[48] Peanparkdee, M., Patrawart, J., & Iwamoto, S. (2019). Effect of extraction conditions on phenolic content, anthocyanin content and antioxidant activity of bran extracts from Thai rice cultivars. Journal of cereal science., 86, 86-91.
[49] Wang, W., Jung, J., Tomasino, E., & Zhao, Y. (2016). Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT-Food Science and Technology., 72, 229-238.
[50] Samad, M. A., Hashim, S. H., Simarani, K., & Yaacob, J. S. (2016). Antibacterial properties and effects of fruit chilling and extract storage on antioxidant activity, total phenolic and anthocyanin content of four date palm (Phoenix dactylifera) cultivars. Molecules., 21(4), 419.
[51] Bendokas, V., Stanys, V., Mažeikienė, I., Trumbeckaite, S., Baniene, R., & Liobikas, J. (2020). Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants., 9(9), 819.
[52] Turturică, M., Oancea, A. M., Râpeanu, G., & Bahrim, G. (2015). Anthocyanins: Naturally occuring fruit pigments with functional properties. The Annals of the University Dunarea De Jos of Galati. Fascicle VI-Food Technology., 39(1), 9-24.
[53] Gahruie, H. H., Mirzapour, A., Ghiasi, F., Eskandari, M. H., Moosavi-Nasab, M., & Hosseini, S. M. H. (2022). Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT., 153, 112422.
[54] Farooq, S., Shah, M. A., Siddiqui, M. W., Dar, B., Mir, S. A., & Ali, A. (2020). Recent trends in extraction techniques of anthocyanins from plant materials. Journal of Food Measurement and Characterization., 14, 3508-3519.
[55] Bhushan, B., Bibwe, B., Pal, A., Mahawar, M. K., Dagla, M. C., Yathish, K., Jat, B. S., Kumar, P., Aggarwal, S. K., & Singh, A. (2023). FTIR spectra, antioxidant capacity and degradation kinetics of maize anthocyanin extract under variable process conditions. Applied Food Research., 3(1), 100282.
[56] Türker, D. A., & Doğan, M. (2021). Application of deep eutectic solvents as a green and biodegradable media for extraction of anthocyanin from black carrots. LWT, 138, 110775.
[58] Shi, S., Xu, X., Feng, J., Ren, Y., Bai, X., & Xia, X. (2023). Preparation of NH3-and H2S-sensitive intelligent pH indicator film from sodium alginate/black soybean seed coat anthocyanins and its use in monitoring meat freshness. Food Packaging and Shelf Life., 35, 100994.
[59] Zhang, H., Li, S., Zheng, H., Han, Z., Lin, B., Wang, Y., Guo, X., Zhou, T., Zhang, H., & Wu, J. (2023). A visual color response test paper for the detection of hydrogen sulfide gas in the air. Molecules., 28(13), 5044.
[60] Ameri, M., Ajji, A., & Kessler, S. (2024). Characterization of a Food‐Safe Colorimetric Indicator Based on Black Rice Anthocyanin/PET Films for Visual Analysis of Fish Spoilage. Packaging Technology and Science.
[61] Ranjbar, M., Tabrizzad, M. H. A., Asadi, G., & Ahari, H. (2023). Investigating the microbial properties of sodium alginate/chitosan edible film containing red beetroot anthocyanin extract for smart packaging in chicken fillet as a pH indicator. Heliyon., 9(8).
[62] Bitencourt, C. M., Fávaro-Trindade, C. S., Sobral, P. J. d. A., & Carvalho, R. A. d. (2014). Gelatin-based films additivated with curcuma ethanol extract: Antioxidant activity and physical properties of films. Food Hydrocolloids., 40, 145-152.
[63] Rawdkuen, S., Faseha, A., Benjakul, S., & Kaewprachu, P. (2020). Application of anthocyanin as a color indicator in gelatin films. Food Bioscience., 36, 100603.
[64] Erna, K. H., Felicia, W. X. L., Vonnie, J. M., Rovina, K., Yin, K. W., & Nur’Aqilah, M. N. (2022). Synthesis and physicochemical characterization of polymer film-based anthocyanin and starch. Biosensors., 12(4), 211.
[65] Wang, S., Marcone, M., Barbut, S., & Lim, L. T. (2012). The impact of anthocyanin‐rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films. Journal of Food Science., 77(4), C497-C505.
[66]Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life., 26, 100550.
[67] Shivangi, S., Dorairaj, D., Negi, P. S., & Shetty, N. P. (2021). Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocolloids., 1.107046,21.
[68] Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2016). Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology., 9, 172-181.
[69] Roy, S., Kim, H.-J., & Rhim, J.-W. (2021). Effect of blended colorants of anthocyanin and shikonin on carboxymethyl cellulose/agar-based smart packaging film. International journal of biological macromolecules., 183, 305-315.
[70] Cheng, M., Yan, X., Cui, Y., Han, M., Wang, Y., Wang, J., Zhang, R., & Wang, X. (2022). Characterization and release kinetics study of active packaging films based on modified starch and red cabbage anthocyanin extract. Polymers., 14(6), 1214.
[71] Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019). Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids., 94, 80-92.
[72] de Oliveira Filho, J. G., Braga, A. R. C., de Oliveira, B. R., Gomes, F. P., Moreira, V. L., Pereira, V. A. C., & Egea, M. B. (2021). The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Research International., 142, 110202.
[73] Yan, J., Zhang, H., Yuan, M., Qin, Y., & Chen, H. (2022). Effects of anthocyanin-rich Kadsura coccinea extract on the physical, antioxidant, and pH-sensitive properties of biodegradable film. Food Biophysics., 17(3), 375-385.
[74] Sohany, M., Tawakkal, I. S. M. A., Ariffin, S. H., Shah, N. N. A. K., & Yusof, Y. A. (2021). Characterization of anthocyanin associated purple sweet potato starch and peel-based pH indicator films. Foods., 10(9), 2005.
[75] Merz, B., Capello, C., Leandro, G. C., Moritz, D. E., Monteiro, A. R., & Valencia, G. A. (2020). A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. International journal of biological macromolecules., 153, 625-632.
[76] Capello, C., Trevisol, T. C., Pelicioli, J., Terrazas, M. B., Monteiro, A. R., & Valencia, G. A. (2021). Preparation and characterization of colorimetric indicator films based on chitosan/polyvinyl alcohol and anthocyanins from agri-food wastes. Journal of Polymers and the Environment., 29, 1616-1629.
[77] Etxabide, A., Maté, J. I., & Kilmartin, P. A. (2021). Effect of curcumin, betanin and anthocyanin containing colourants addition on gelatin films properties for intelligent films development. Food Hydrocolloids., 115, 106593.
[78] Bojorges, H., Ríos‐Corripio, M., Hernández‐Cázares, A. S., Hidalgo‐Contreras, J. V., & Contreras‐Oliva, A. (2020). Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Science & Nutrition., 8(8), 4308-4319.
[79] Marrone, R., Smaldone, G., Ambrosio, R. L., Festa, R., Ceruso, M., Chianese, A., & Anastasio, A. (2021). Effect of beetroot (Beta vulgaris) extract on Black Angus burgers shelf life. Italian Journal of Food Safety., 10(1).
[80] You, P., Wang, L., Zhou, N., Yang, Y., & Pang, J. (2022). A pH-intelligent response fish packaging film: Konjac glucomannan/carboxymethyl cellulose/blackcurrant anthocyanin antibacterial composite film. International journal of biological macromolecules., 204, 386-396.
[81] Ganiari, S., Choulitoudi, E., & Oreopoulou, V. (2017). Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends in Food Science & Technology., 68, 70-82.
[82] Vlčko, T., Rathod, N. B., Kulawik, P., Ozogul, Y., & Ozogul, F. (2022). The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. In Advances in food and nutrition research (Vol. 102, pp. 275-339). Elsevier.
[83] Huang, S., Xiong, Y., Zou, Y., Dong, Q., Ding, F., Liu, X., & Li, H. (2019). A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids., 90, 198-205.
[84] You, S., Zhang, X., Wang, Y., Jin, Y., Wei, M., & Wang, X. (2022). Development of highly stable color indicator films based on κ-carrageenan, silver nanoparticle and red grape skin anthocyanin for marine fish freshness assessment. International journal of biological macromolecules., 216, 655-669.
[85] Ghorbani, M., Divsalar, E., Molaei, R., Ezati, P., Moradi, M., Tajik, H., & Abbaszadeh, M. (2021). A halochromic indicator based on polylactic acid and anthocyanins for visual freshness monitoring of minced meat, chicken fillet, shrimp, and fish roe. Innovative Food Science & Emerging Technologies., 74, 102864.
[86] Zhai, X., Zou, X., Shi, J., Huang, X., Sun, Z., Li, Z., Sun, Y., Li, Y., Wang, X., & Holmes, M. (2020). Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sensors and Actuators B: Chemical., 302, 127130.
[87] Sun, Y., Wen, J., Chen, Z., Qiu, S., Wang, Y., Yin, E., Li, H., & Liu, X. (2022). Non-destructive and rapid method for monitoring fish freshness of grass carp based on printable colorimetric paper sensor in modified atmosphere packaging. Food Analytical Methods., 1-11.
[88] Bekhit, A. E. D. A., Giteru, S. G., Holman, B. W., & Hopkins, D. L. (2021). Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health. Comprehensive Reviews in Food Science and Food Safety., 20(4), 3620-3666.
[89] Hui, X., Wan, Y., Dong, H., Peng, J., Wu, W., Yang, X., & He, Q. (2023). A promising insight into the inhibition of lipid oxidation, protein degradation and biogenic amine accumulation in postmortem fish: Functional glazing layers of modified bio-polymer. LWT., 177, 114575.
[90] Tahir, H. E., Hashim, S. B., Mahunu, G. K., Arslan, M., Jiyong, S., Mariod, A. A., Zhang, J., El-Seedi, H. R., Zhai, X., & Musa, T. H. (2022). Smart films fabricated from natural pigments for measurement of total volatile basic nitrogen (TVB-N) content of meat for freshness evaluation: A systematic review. Food Chemistry., 396, 133674.
[91] Arun, R., Shruthy, R., Preetha, R., & Sreejit, V. (2022). Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere., 291, 132786.
[92] Chaiyasut, C., Sivamaruthi, B. S., Pengkumsri, N., Sirilun, S., Peerajan, S., Chaiyasut, K., & Kesika, P. (2016). Anthocyanin profile and its antioxidant activity of widely used fruits, vegetables, and flowers in Thailand. Asian Journal of Pharmaceutical and Clinical Research., 9(6), 218-224.
93] Mary, S. K., Koshy, R. R., Daniel, J., Koshy, J. T., Pothen, L. A., & Thomas, S. (2020). Development of starch based intelligent films by incorporating anthocyanins of butterfly pea flower and TiO 2 and their applicability as freshness sensors for prawns during storage. RSC advances., 10(65), 39822-39830.
[94] Kanatt, S. R. (2020). Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packaging and Shelf Life., 24, 100506.
[95] Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2022). Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocolloids., 124, 107249.
[96] Yin, S., Zhang, Y., Zhang, X., Tao, K., & Li, G. (2023). High-strength collagen/delphinidin film incorporated with Vaccinium oxycoccus pigment for active and intelligent food packaging. Collagen and Leather., 5(1), 11.
[97] Łupina, K., Kowalczyk, D., Zięba, E., Kazimierczak, W., Mężyńska, M., Basiura-Cembala, M., & Wiącek, A. E. (2019). Edible films made from blends of gelatin and polysaccharide-based emulsifiers-A comparative study. Food Hydrocolloids., 96, 555-567.
[98] Tavakoli, S., Mubango, E., Tian, L., ŃDri, Y. B., Tan, Y., Hong, H., & Luo, Y. (2023). Novel intelligent films containing anthocyanin and phycocyanin for nondestructively tracing fish spoilage. Food Chemistry., 402, 134203.
[99] Zeng, F., Ye, Y., Liu, J., & Fei, P. (2023). Intelligent pH indicator composite film based on pectin/chitosan incorporated with black rice anthocyanins for meat freshness monitoring. Food Chemistry., X, 17, 100531.