ریزپوشانی لاکتوباسیلوس اسیدوفیلوس La5 در بستر آلژینات سدیم و کازئینات سدیم و قابلیت زنده‌مانی آن در شرایط شبیه‌سازی شده گوارشی

نویسندگان
1 دانشجوی دکتری تخصصی، گروه علوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
2 دانشیار، دانشگاه آزاد اسلامی واحد سبزوار، گروه علوم و صنایع غذایی، سبزوار، ایران
3 استادیار، جهاد دانشگاهی مشهد، پژوهشکده بیوتکنولوژی صنعتی، گروه پژوهشی بیوتکنولوژی صنعتی میکروارگانیسم‌ها، مشهد، ایران
4 دانشیار، دانشگاه آزاد اسلامی واحد تربت حیدریه ، گروه علوم و صنایع غذایی، تربت حیدریه، ایران
5 استاد، دانشگاه آزاد اسلامی واحد سبزوار، گروه کشاورزی، سبزوار، ایران
چکیده
زنده‌مانی پروبیوتیکها در محیطهای حساس به‌خصوص شرایط گوارشی اهمیت زیادی دارد. در این تحقیق از تکنیک ریزپوشانی به‌عنوان روشی برای افزایش امکان زنده‌مانی پروبیوتیک‌ها (لاکتوباسیلوس اسیدوفیلوس La5) در شرایط شبیه‌سازی شده گوارشی استفاده گردید. باکتری‌های مذکور به روش امولسیون‌سازی در بستر آلژینات سدیم و کازئینات سدیم در پنج سطح غلظتی به‌صورت تک غلظتی و ترکیب دو ماده میکروانکپسوله شدند و از نظر تعداد سلول زنده مانده، بازده انکپسولاسیون، زنده‌مانی در برابر نمک صفرا، زنده‌مانی در برابر اسید معده و مایع روده‌ای با و بدون نمک صفرا مورد بررسی قرار گرفتند. با توجه به نتایج به دست آمده از مقایسه میانگین داده‌ها در تمامی آزمون‌ها بین تیمارهای مختلف اختلاف معناداری وجود داشت (p<0/05)؛ به‌طوری که زنده‌مانی سلول‌های آزاد در شرایط گوارشی به شدت کاهشی بود اما میکروانکپسولاسیون به‌عنوان یک عامل محافظتی عمل نموده و زنده‌مانی سویه‌های میکروانکپسوله بیشتر از سلول‌های آزاد بود. از طرفی ترکیب آلژینات سدیم و کازئینات سدیم به عنوان پوشش توانست مقاومت باکتری را در برابر شرایط گوارشی به‌طور معناداری افزایش دهد(p<0/05). در بین تیمارها، سلول‌های آزاد (L-FC) کمترین زنده‌مانی در برابر محیط گوارشی را از خود نشان داد به‌طوری که در آزمون زنده‌مانی در محیط روده با نمک صفرا در 300 دقیقه سلول زنده‌ای وجود نداشت اما تیمار با پوشش 75% آلژینات سدیم و 25% کازئینات سدیم (L-SA3SC1) بالاترین بازده را در فرآیند میکروانکپسولاسیون داشته و بهترین اثر محافظتی در برابر نمک صفرا، اسید معده و مایع روده‌ای را از خود نشان داد. بنابراین می‌توان نتیجه گرفت میکروانکپسولاسیون به روش امولسیون‌‌سازی با استفاده از ترکیب آلژینات سدیم و کازئینات سدیم می‌تواند در افزایش زنده ماندن باکتری لاکتوباسیلوس اسیدوفیلوس موثر باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Microencapsulation of Lactobacillus acidophilus La5 at Sodium Alginate and Sodium Caseinate Matrix and its viability under Simulated Gastrointestinal Conditions

نویسندگان English

Fatemeh Hosseini Tabatabaei 1
Amir Hossein Elhamirad 2
Reza Karazhyan 3
Hojjat Karazhiyan 4
Mohammad Armin 5
1 Ph.D. student, Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
2 Associate Professor, Department of Food Science and Technology, Islamic Azad University, Sabzevar, Iran
3 Assistant Professor, Research Institute for Industrial Biotechnology, department of Industrial Microbial Biotechnology, Mashhad, Iran
4 Associate Professor, Department of Food Science and Technology, Islamic Azad University, Torbat-e Heydarieh, Iran
5 Professor, Department of Agricultural, Islamic Azad University, Sabzevar, Iran
چکیده English

The viability of probiotics in sensitive environments, particularly gastrointestinal conditions, is of significant importance. In this study, the microencapsulation technique was used to increase the viability of probiotics (Lactobacillus acidophilus La5) under simulated gastrointestinal conditions. These bacteria were microencapsulated using the emulsification method in a matrix of Sodium alginate and Sodium caseinate at five concentration levels, individually and in combination. Then it was examined for viable cell count, encapsulation yield, survival against bile salts, and viability against gastric acid and intestinal fluid with and without bile salts. Our results showed significant differences between the treatments in all tests when comparing the average data (p<0.05). The survival of free cells in digestive conditions decreased sharply; however, microencapsulation acted as a protective role, and the survival of microencapsulated strains was higher than that of free cells. The results showed that microencapsulation acts as a protective mechanism for improving the viability of microencapsulated strains compared to free cells. On the other hand, the combination of Sodium alginate and Sodium caseinate as an encapsulant can significantly increase the bacteria's resistance to digestive conditions (p<0.05). Among the treatments, the free cells (L-FC) treatment showed the lowest survival against the simulated digestive environment. In the viability test in the intestinal environment with bile salt, no live cells were present after 300 minutes. However, in contrast, the treatment 75% Sodium alginate + 25% Sodium caseinate (L-SA3SC1), had the highest encapsulation yield and exhibited the best protective effect against bile salts, gastric acid, and intestinal fluid. In conclusion, microencapsulation using the emulsification method with a combination of Sodium alginate and Sodium caseinate effectively enhances the survival of Lactobacillus acidophilus. It thus can significantly benefit human health, particularly in improving gastrointestinal diseases.

کلیدواژه‌ها English

Microencapsulation
Probiotic
Lactobacillus acidophilus
Sodium alginate
Sodium Caseinate
1. Rahmati, F., (2018). Identification and characterisation of Lactococcus starter strains in milk-based traditional fermented products in the region of Iran. AIMS Agriculture & Food, 3(1).
2. Sohrabpour, S., M. Rezazadeh Bari, M. Alizadeh, and S. Amiri, (2021). Investigation of the rheological, microbial, and physicochemical properties of developed synbiotic yoghurt containing Lactobacillus acidophilus LA‐5, honey, and cinnamon extract. Journal of Food Processing and Preservation, 45(4), p: e15323.
3. Rashidinejad, A., A. Bahrami, A. Rehman, A. Rezaei, A. Babazadeh, H. Singh, and S.M. Jafari, (2022). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical reviews in food science and nutrition, 62(9), p: 2470-2494.
4. Gao, J., X. Li, G. Zhang, F.A. Sadiq, J. Simal‐Gandara, J. Xiao, and Y. Sang, (2021). Probiotics in the dairy industry—Advances and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20(4), p: 3937-3982.
5. Mofid, V., A. Izadi, S.Y. Mojtahedi, and L. Khedmat, (2020). Therapeutic and nutritional effects of synbiotic yogurts in children and adults: a clinical review. Probiotics and antimicrobial proteins, 12, p: 851-859.
6. Homayouni, A., A. Azizi, M. Ehsani, M. Yarmand, and S. Razavi, (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food chemistry, 111(1), p: 50-55.
7. María Remes-Troche, J., E. Coss-Adame, M. Ángel Valdovinos-Díaz, O. Gómez-Escudero, M. Eugenia Icaza-Chávez, J. Antonio Chávez-Barrera, . . . M. Antonio Lira-Pedrín, (2020). Lactobacillus acidophilus LB: A useful pharmabiotic for the treatment of digestive disorders. Therapeutic Advances in Gastroenterology, 13, p: 1756284820971201.
8. Amiri, S., Z.M. Moghanjougi, M.R. Bari, and A.M. Khaneghah, (2021). Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science, 33(SP1), p: 55-68.
9. Afzaal, M., A.U. Khan, F. Saeed, M.S. Arshad, M.A. Khan, M. Saeed, . . . A. Ahmed, (2020). Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Science & Nutrition, 8(3), p: 1649-1656.
10. Coelho, S.C., B.N. Estevinho, and F. Rocha, (2021). Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying–A review. Food Chemistry, 339, p: 127850.
11. Saini, A., D. Panwar, P.S. Panesar, and M.B. Bera, (2021). Encapsulation of functional ingredients in lipidic nanocarriers and antimicrobial applications: a review. Environmental Chemistry Letters, 19, p: 1107-1134.
12. dos Santos, D.X., A.A. Casazza, B. Aliakbarian, R. Bedani, S.M.I. Saad, and P. Perego, (2019). Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. Lwt, 99, p: 404-410.
13. Yang, M., Z. Liang, L. Wang, M. Qi, Z. Luo, and L. Li, (2020). Microencapsulation delivery system in food industry—Challenge and the way forward. Advances in polymer technology, 2020(1), p: 7531810.
14. Timilsena, Y.P., M.A. Haque, and B. Adhikari, (2020). Encapsulation in the food industry: A brief historical overview to recent developments. Food and Nutrition Sciences, 11(6), p: 481-508.
15. Sánchez-Portilla, Z., L.M. Melgoza-Contreras, R. Reynoso-Camacho, J.I. Pérez-Carreón, and A. Gutiérrez-Nava, (2020). Incorporation of Bifidobacterium sp. into powder products through a fluidized bed process for enteric targeted release. Journal of dairy science, 103(12), p: 11129-11137.
16. Qi, X., S. Simsek, B. Chen, and J. Rao, (2020). Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. International Journal of Biological Macromolecules, 165, p: 1675-1685.
17. Amine, K.M., C.P. Champagne, Y. Raymond, D. St-Gelais, M. Britten, P. Fustier, . . . M. Lacroix, (2014). Survival of microencapsulated Bifidobacterium longum in Cheddar cheese during production and storage. Food Control, 37, p: 193-199.
18. Martin, M., F. Lara-Villoslada, M. Ruiz, and M. Morales, (2013). Effect of unmodified starch on viability of alginate-encapsulated Lactobacillus fermentum CECT5716. LWT-Food Science and Technology, 53(2), p: 480-486.
19. Głąb, T.K. and J. Boratyński, (2017). Potential of casein as a carrier for biologically active agents. Topics in Current Chemistry, 375, p: 1-20.
20. Lu, Y., B. Zhang, H. Shen, X. Ge, X. Sun, Q. Zhang, . . . W. Li, (2021). Sodium caseinate and acetylated mung bean starch for the encapsulation of lutein: Enhanced solubility and stability of lutein. Foods, 11(1), p: 65.
21. Motalebi Moghanjougi, Z., M. Rezazadeh Bari, M. Alizadeh Khaledabad, S. Amiri, and H. Almasi, (2021). Microencapsulation of Lactobacillus acidophilus LA‐5 and Bifidobacterium animalis BB‐12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Science & Nutrition, 9(9), p: 5103-5111.
22. Shahmoradi, Z., M.A. Khaledabad, and S. Amiri, (2023). Effect of co-encapsulation of Lactobacillus acidophilus LA5 and selenium in hydrogelated matrix of basil seed mucilage/sodium caseinate on properties of set yogurt. Food Bioscience, 55, p: 103039.
23. Oberoi, K., A. Tolun, Z. Altintas, and S. Sharma, (2021). Effect of alginate-microencapsulated hydrogels on the survival of lactobacillus rhamnosus under simulated gastrointestinal conditions. Foods, 10(9), p: 1999.
24. Krasaekoopt, W., B. Bhandari, and H. Deeth, (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International dairy journal, 14(8), p: 737-743.
25. Sheu, T. and R. Marshall, (1993). Microentrapment of lactobacilli in calcium alginate gels. Journal of Food Science, 58(3), p: 557-561.
26. Holkem, A.T., G.C. Raddatz, J.S. Barin, É.M.M. Flores, E.I. Muller, C.F. Codevilla, . . . C.R. de Menezes, (2017). Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, 76, p: 216-221.
27. Santacruz, S. and M. Castro, (2018). Viability of free and encapsulated Lactobacillus acidophilus incorporated to cassava starch edible films and its application to Manaba fresh white cheese. LWT, 93, p: 570-572.
28. Zhang, Y., J. Lin, and Q. Zhong, (2015). The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Research International, 71, p: 9-15.
29. Auwal, S.M., M. Zarei, C.P. Tan, and N. Saari, (2018). Comparative physicochemical stability and efficacy study of lipoid S75-biopeptides nanoliposome composite produced by conventional and direct heating methods. International Journal of Food Properties, 21(1), p: 1646-1660.
30. My Dong, L., T.H. Le Quyen, T. Duc Thang, and D. Thi Kim Thuy, (2020). The Effects of Extrusion and Internal Emulsion Microencapsulation Methods on the Viability of Lactobacillus acidophilus. Journal of Human Environment and Health Promotion, 6(1), p: 1-5.
31. Liu, H., J. Gong, D. Chabot, S.S. Miller, S.W. Cui, J. Ma, . . . Q. Wang, (2016). Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food hydrocolloids, 54, p: 328-337.
32. Kim, S.-J., S.Y. Cho, S.H. Kim, O.-J. Song, I.-S. Shin, D.S. Cha, and H.J. Park, (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT-Food Science and Technology, 41(3), p: 493-500.
33. Kailasapathy, K., (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current issues in intestinal microbiology, 3(2), p: 39-48.
34. Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones, (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of microbiological methods, 56(1), p: 27-35.
35. Nag, A., K.-S. Han, and H. Singh, (2011). Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. International Dairy Journal, 21(4), p: 247-253.
36. Zeashan, M., M. Afzaal, F. Saeed, A. Ahmed, T. Tufail, A. Ahmed, and F.M. Anjum, (2020). Survival and behaviour of free and encapsulated probiotic bacteria under simulated human gastrointestinal and technological conditions. Food Science & Nutrition, 8(5), p: 2419-2426.
37. Mokarram, R., S. Mortazavi, M.H. Najafi, and F. Shahidi, (2009). The influence of multi-stage alginate coating on the survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), p: 1040-1045.