1. Rahmati, F., (2018). Identification and characterisation of Lactococcus starter strains in milk-based traditional fermented products in the region of Iran. AIMS Agriculture & Food, 3(1).
2. Sohrabpour, S., M. Rezazadeh Bari, M. Alizadeh, and S. Amiri, (2021). Investigation of the rheological, microbial, and physicochemical properties of developed synbiotic yoghurt containing Lactobacillus acidophilus LA‐5, honey, and cinnamon extract. Journal of Food Processing and Preservation, 45(4), p: e15323.
3. Rashidinejad, A., A. Bahrami, A. Rehman, A. Rezaei, A. Babazadeh, H. Singh, and S.M. Jafari, (2022). Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical reviews in food science and nutrition, 62(9), p: 2470-2494.
4. Gao, J., X. Li, G. Zhang, F.A. Sadiq, J. Simal‐Gandara, J. Xiao, and Y. Sang, (2021). Probiotics in the dairy industry—Advances and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20(4), p: 3937-3982.
5. Mofid, V., A. Izadi, S.Y. Mojtahedi, and L. Khedmat, (2020). Therapeutic and nutritional effects of synbiotic yogurts in children and adults: a clinical review. Probiotics and antimicrobial proteins, 12, p: 851-859.
6. Homayouni, A., A. Azizi, M. Ehsani, M. Yarmand, and S. Razavi, (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food chemistry, 111(1), p: 50-55.
7. María Remes-Troche, J., E. Coss-Adame, M. Ángel Valdovinos-Díaz, O. Gómez-Escudero, M. Eugenia Icaza-Chávez, J. Antonio Chávez-Barrera, . . . M. Antonio Lira-Pedrín, (2020). Lactobacillus acidophilus LB: A useful pharmabiotic for the treatment of digestive disorders. Therapeutic Advances in Gastroenterology, 13, p: 1756284820971201.
8. Amiri, S., Z.M. Moghanjougi, M.R. Bari, and A.M. Khaneghah, (2021). Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science, 33(SP1), p: 55-68.
9. Afzaal, M., A.U. Khan, F. Saeed, M.S. Arshad, M.A. Khan, M. Saeed, . . . A. Ahmed, (2020). Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Science & Nutrition, 8(3), p: 1649-1656.
10. Coelho, S.C., B.N. Estevinho, and F. Rocha, (2021). Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying–A review. Food Chemistry, 339, p: 127850.
11. Saini, A., D. Panwar, P.S. Panesar, and M.B. Bera, (2021). Encapsulation of functional ingredients in lipidic nanocarriers and antimicrobial applications: a review. Environmental Chemistry Letters, 19, p: 1107-1134.
12. dos Santos, D.X., A.A. Casazza, B. Aliakbarian, R. Bedani, S.M.I. Saad, and P. Perego, (2019). Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. Lwt, 99, p: 404-410.
13. Yang, M., Z. Liang, L. Wang, M. Qi, Z. Luo, and L. Li, (2020). Microencapsulation delivery system in food industry—Challenge and the way forward. Advances in polymer technology, 2020(1), p: 7531810.
14. Timilsena, Y.P., M.A. Haque, and B. Adhikari, (2020). Encapsulation in the food industry: A brief historical overview to recent developments. Food and Nutrition Sciences, 11(6), p: 481-508.
15. Sánchez-Portilla, Z., L.M. Melgoza-Contreras, R. Reynoso-Camacho, J.I. Pérez-Carreón, and A. Gutiérrez-Nava, (2020). Incorporation of Bifidobacterium sp. into powder products through a fluidized bed process for enteric targeted release. Journal of dairy science, 103(12), p: 11129-11137.
16. Qi, X., S. Simsek, B. Chen, and J. Rao, (2020). Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. International Journal of Biological Macromolecules, 165, p: 1675-1685.
17. Amine, K.M., C.P. Champagne, Y. Raymond, D. St-Gelais, M. Britten, P. Fustier, . . . M. Lacroix, (2014). Survival of microencapsulated Bifidobacterium longum in Cheddar cheese during production and storage. Food Control, 37, p: 193-199.
18. Martin, M., F. Lara-Villoslada, M. Ruiz, and M. Morales, (2013). Effect of unmodified starch on viability of alginate-encapsulated Lactobacillus fermentum CECT5716. LWT-Food Science and Technology, 53(2), p: 480-486.
19. Głąb, T.K. and J. Boratyński, (2017). Potential of casein as a carrier for biologically active agents. Topics in Current Chemistry, 375, p: 1-20.
20. Lu, Y., B. Zhang, H. Shen, X. Ge, X. Sun, Q. Zhang, . . . W. Li, (2021). Sodium caseinate and acetylated mung bean starch for the encapsulation of lutein: Enhanced solubility and stability of lutein. Foods, 11(1), p: 65.
21. Motalebi Moghanjougi, Z., M. Rezazadeh Bari, M. Alizadeh Khaledabad, S. Amiri, and H. Almasi, (2021). Microencapsulation of Lactobacillus acidophilus LA‐5 and Bifidobacterium animalis BB‐12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Science & Nutrition, 9(9), p: 5103-5111.
22. Shahmoradi, Z., M.A. Khaledabad, and S. Amiri, (2023). Effect of co-encapsulation of Lactobacillus acidophilus LA5 and selenium in hydrogelated matrix of basil seed mucilage/sodium caseinate on properties of set yogurt. Food Bioscience, 55, p: 103039.
23. Oberoi, K., A. Tolun, Z. Altintas, and S. Sharma, (2021). Effect of alginate-microencapsulated hydrogels on the survival of lactobacillus rhamnosus under simulated gastrointestinal conditions. Foods, 10(9), p: 1999.
24. Krasaekoopt, W., B. Bhandari, and H. Deeth, (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International dairy journal, 14(8), p: 737-743.
25. Sheu, T. and R. Marshall, (1993). Microentrapment of lactobacilli in calcium alginate gels. Journal of Food Science, 58(3), p: 557-561.
26. Holkem, A.T., G.C. Raddatz, J.S. Barin, É.M.M. Flores, E.I. Muller, C.F. Codevilla, . . . C.R. de Menezes, (2017). Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, 76, p: 216-221.
27. Santacruz, S. and M. Castro, (2018). Viability of free and encapsulated Lactobacillus acidophilus incorporated to cassava starch edible films and its application to Manaba fresh white cheese. LWT, 93, p: 570-572.
28. Zhang, Y., J. Lin, and Q. Zhong, (2015). The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Research International, 71, p: 9-15.
29. Auwal, S.M., M. Zarei, C.P. Tan, and N. Saari, (2018). Comparative physicochemical stability and efficacy study of lipoid S75-biopeptides nanoliposome composite produced by conventional and direct heating methods. International Journal of Food Properties, 21(1), p: 1646-1660.
30. My Dong, L., T.H. Le Quyen, T. Duc Thang, and D. Thi Kim Thuy, (2020). The Effects of Extrusion and Internal Emulsion Microencapsulation Methods on the Viability of Lactobacillus acidophilus. Journal of Human Environment and Health Promotion, 6(1), p: 1-5.
31. Liu, H., J. Gong, D. Chabot, S.S. Miller, S.W. Cui, J. Ma, . . . Q. Wang, (2016). Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food hydrocolloids, 54, p: 328-337.
32. Kim, S.-J., S.Y. Cho, S.H. Kim, O.-J. Song, I.-S. Shin, D.S. Cha, and H.J. Park, (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT-Food Science and Technology, 41(3), p: 493-500.
33. Kailasapathy, K., (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current issues in intestinal microbiology, 3(2), p: 39-48.
34. Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones, (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of microbiological methods, 56(1), p: 27-35.
35. Nag, A., K.-S. Han, and H. Singh, (2011). Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. International Dairy Journal, 21(4), p: 247-253.
36. Zeashan, M., M. Afzaal, F. Saeed, A. Ahmed, T. Tufail, A. Ahmed, and F.M. Anjum, (2020). Survival and behaviour of free and encapsulated probiotic bacteria under simulated human gastrointestinal and technological conditions. Food Science & Nutrition, 8(5), p: 2419-2426.
37. Mokarram, R., S. Mortazavi, M.H. Najafi, and F. Shahidi, (2009). The influence of multi-stage alginate coating on the survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), p: 1040-1045.