[1] Organisation mondiale de la santé. 2018. World Health Statistics 2018: Monitoring Health for the SDGs Sustainable Development Goals. World health organization.
[2] Nwachukwu, I.D. and Aluko, R.E. 2019. Structural and functional properties of food protein‐derived antioxidant peptides. Journal of food biochemistry, 43(1), p.e12761.
[3] Ahmed, M., Verma, A. K., & Patel, R. 2020. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustainable Chemistry and Pharmacy, 18, 100315. https://doi.org/10.1016/j.scp.2020.100315.
[4] Leung, R., Venus, C., Zeng, T., & Tsopmo, A. 2018. Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chemistry, 254, 165-169. https://doi.org/10.1016/j.foodchem.2018.01.190.
[5] Chalamaiah, M., Ulug, S. K., Hong, H., & Wu, J. 2019. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods, 58, 123-12. https://doi.org/10.1016/j.jff.2019.04.050.
[6] Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P., & Maqsood, S. 2019. Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. Lwt, 110, 207-213. https://doi.org/10.1016/j.lwt.2019.04.084.
[7] Lu, X., Zhang, L., Sun, Q., Song, G., & Huang, J. 2019. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Research International, 116, 707-716. https://doi.org/10.1016/j.foodres.2018.09.001.
[8] CK Rajendran, S. R., Mohan, A., Khiari, Z., Udenigwe, C. C., & Mason, B. 2018. Yield, physicochemical, and antioxidant properties of Atlantic salmon visceral hydrolysate: Comparison of lactic acid bacterial fermentation with Flavourzyme proteolysis and formic acid treatment. Journal of food processing and preservation, 42(6), e13620.
[9] Jemil, I., Abdelhedi, O., Mora, L., Nasri, R., Aristoy, M. C., Jridi, M., ... & Nasri, M. 2016. Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry, 51(12), 2186-2197. https://doi.org/10.1016/j.procbio.2016.08.021.
[10] Jiang, X., Cui, Z., Wang, L., Xu, H., & Zhang, Y. 2020. Production of bioactive peptides from corn gluten meal by solid-state fermentation with Bacillus subtilis MTCC5480 and evaluation of its antioxidant capacity in vivo. Lwt, 131, 109767. https://doi.org/10.1016/j.lwt.2020.109767.
[11] Chatterjee, R., Dey, T. K., Ghosh, M., & Dhar, P. 2015. Enzymatic modification of sesame seed protein, sourced from waste resource for nutraceutical application. Food and Bioproducts Processing, 94, 70-81. https://doi.org/10.1016/j.fbp.2015.01.007.
[12] Muhialdin, B. J., Rani, N. F. A., & Hussin, A. S. M. 2020. Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes. Lwt, 131, 109776. https://doi.org/10.1016/j.lwt.2020.109776.
[13] Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R. B. S.-B., Mehiri, M., Nasri, M. 2014. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry, 49(6), 963-972. https://doi.org/10.1016/j.procbio.2014.03.004
[14] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), 1198-1205. https://doi.org/10.1016/j.foodchem.2008.10.075.
[15] Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., & Sharma, A. 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry, 121(1), 178-184. https://doi.org/10.1016/j.foodchem.2009.12.027.
[16] Prieto, P., Pineda, M., & Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.
[17] Sanjukta, S., Padhi, S., Sarkar, P., Singh, S. P., Sahoo, D., & Rai, A. K. 2021. Production, characterization and molecular docking of antioxidant peptides from peptidome of kinema fermented with proteolytic Bacillus spp. Food Research International, 141, 110161. https://doi.org/10.1016/j.foodres.2021.110161.
[18] Nasri, R., Abdelhedi, O., Nasri, M., & Jridi, M. 2022. Fermented protein hydrolysates: biological activities and applications. Current Opinion in Food Science, 43, 120-127. https://doi.org/10.1016/j.cofs.2021.11.006.
[19] Jensen, M. P., & Ardö, Y. 2010. Variation in aminopeptidase and aminotransferase activities of six cheese related Lactobacillus helveticus strains. International Dairy Journal, 20(3), 149-155.
[20] Fang, Y., Xu, Z. I., Shi, Y., Pei, F., Yang, W., Ma, N., & Hu, Q. 2017. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264. 7 cells. Food Chemistry, 219, 391-398.
[21] Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R. B. S.-B., Mehiri, M., Nasri, M. 2014. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry, 49(6), 963-972. https://doi.org/10.1016/j.procbio.2014.03.004.
[22] Zhi, T., Li, X., Sadiq, F. A., Mao, K., Gao, J., Mi, S., & Sang, Y. 2022. Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods: Preparation, purification, identification and characterization. LWT, 164, 113636. https://doi.org/10.1016/j.lwt.2022.113636.
[23] Hwang, H. S., & Winkler-Moser, J. K. 2017. Antioxidant activity of amino acids in soybean oil at frying temperature: Structural effects and synergism with tocopherols. Food Chemistry, 221, 1168-1177. https://doi.org/10.1016/j.foodchem.2016.11.042 .
[24] Magro, A. E. A., Silva, L. C., Rasera, G. B., & de Castro, R. J. S. 2019. Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresources and Bioprocessing, 6(1), 1-9.
[25] Torino, M. I., Limón, R. I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C., & Frias, J. 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food chemistry, 136(2), 1030-1037. https://doi.org/10.1016/j.foodchem.2012.09.015.
[26] Wali, A., Mijiti, Y., Yanhua, G., Yili, A., Aisa, H. A., & Kawuli, A. 2021. Isolation and identification of a novel antioxidant peptide from chickpea (Cicer arietinum L.) sprout protein hydrolysates. International Journal of Peptide Research and Therapeutics, 27, 219-227.
[27] Khantaphant, S., & Benjakul, S. 2008. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(4), 410-419. https://doi.org/10.1016/j.cbpb.2008.08.011.
[28] Mandel, S., Weinreb, O., Reznichenko, L., Kalfon, L., & Amit, T. 2006. Green tea catechins as brain-permeable, non toxic iron chelators to" iron out iron" from the brain. Journal of Neural Transmission-Supplements only, (71), 249-258.
[29] Fang, Y., Wang, S., Liu, S., Lu, M., Jiao, Y., Chen, G., & Pan, J. 2015. Solid-state fermentation of Acanthogobius hastaprocessing by-products for the production of antioxidant protein hydrolysates with Aspergillus oryzae. Brazilian Archives of Biology and Technology, 58, 343-352. https://doi.org/10.1590/S1516-8913201500297.
[30] Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. 2014. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55. https://doi.org/10.1016/j.peptides.2014.09.001.
[31] Mansor, A. B., Kahar, A. A., Rahman, S. A., Lelamurni, D., & Razak, A. 2014. Distribution and characterization of indigenous microbes from Malaysian fermented fish products. Functional Food Culture.
[32] Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. 2023. Bioactive protein hydrolysates obtained from amaranth by fermentation with lactic acid bacteria and Bacillus species. Heliyon, 9(2).