بررسی فعالیت آنتی اکسیدانی پروتئین هیدرولیز شده کنجاله کنجد تولیدی با تخمیر توسط گونه های باسیلوس

نویسندگان
گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
پروتئین هیدرولیز شده منبع ارزشمندی از پپتیدهای زیست فعال است. تولید پروتئین هیدرولیز شده از طریق فرآیند تخمیر یک رویکرد سازگار با محیط زیست است که در اغلب موارد نسبت به هیدرولیز آنزیمی و شیمیایی ترجیح داده می­شود. . در این پژوهش از 4 گونهBacillus pumilus PTCC 1319 ، Bacillus coagulans IBRC 10807، PTCC 1595 Bacillus licheniformis و PTCC 1156 Bacillus subtilis جهت هیدرولیز پروتئین کنجاله کنجد استفاده شد. آزمون­های مورد بررسی شامل اندازه­گیری غلظت پپتید­ها با روش OPA، اندازه­گیری فعالیت آنتی­اکسیدانی شامل مهار رادیکال آزاد DPPH، قدرت احیاء کنندگی یون آهن، فعالیت آنتی­اکسیدانی کل و قدرت شلاته کنندگی یون آهن بود. غلظت پپتیدها پس از مدت زمان 24 ساعت برای 4 گونهBacillus اندازه­گیری شد. کمترین غلظت پپتید (mg/mL 656/0) مربوط به تیمار تخمیر شده با B. licheniformis و بیشترین مقدار (mg/mL 38/1) مربوط به تیمار هیدرولیز شده با B. subtilisبود؛ بطوری­که بین همه تیمارها اختلاف معنی­داری )05/0 (p<مشاهده شد. نتایج درصد مهار رادیکال آزاد DPPH نشان داد که بیشترین درصد مهار (6/76%) مربوط به نمونه هیدرولیز شده توسط Bacillus coagulans و کمترین مقدار (36/57%) مربوط به تیمار هیدرولیز شده با B. licheniformis بود به طوری­که بین تیمارها اختلاف معنی­داری )05/0 (p<مشاهده شد. نمونه تخمیر شده با Bacillus pumilus قدرت احیاء کنندگی بیشتری (992/0 جذب در 700 نانومتر) نشان داند. همچنین بین تیمارها اختلاف معنی­داری )05/0 (p<مشاهده شد. بیشترین درصد شلاته کنندگی یون آهن (6/85%) در نمونه تخمیر شده با B. subtilis مشاهده شد. فعالیت آنتی­اکسیدانی کل نشان داد که پروتئین هیدرولیز شده حاصل از تخمیر توسط Bacillus coagulans دارای بیشترین مقدار جذب در 695 نانومتر می­باشد و بین تیمارها اختلاف معنی­داری )05/0 (p< مشاهده شد. بطور کلی تخمیر پروتئین کنجد توسط گونه­های Bacillus‌ منجر به تولید پروتئین­های هیدرولیز شده با فعالیت آنتی­اکسیدانی بالایی شد که می­تواند به عنوان منبعی بالقوه در فرمولاسیون مواد غذایی مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Antioxidant activity of sesame meal protein hydrolysate produced with fermentation by Bacillus species

نویسندگان English

Parisa Raei
Morteza Khomeiri
Alireza Sadeghi Mahoonak
Ali Moayedi
Mahboobeh Kashiri
Department of Food Science & Technology,Gorgan University of Agricultural Sciences & Natural Resources,
چکیده English

Protein hydrolysate is a valuable source of bioactive peptides. The production of protein hydrolysate through fermentation is an environmentally friendly approach preferred over enzymatic and chemical hydrolysis in most cases. This research employed Bacillus species, including Bacillus pumilus, Bacillus coagulans, Bacillus licheniformis, and Bacillus subtilis, to hydrolyze sesame meal protein. The investigated tests included measuring the concentration of peptides by the OPA method, DPPH radical inhibition, and iron ion reducing power, total antioxidant activity, and iron ion chelating activity. The concentration of peptides was evaluated after 24 h for Bacillus species. The lowest peptide concentration (0.656 mg/mL) was associated with the fermented treatment by B. licheniformis, while the highest value (1.38 mg/mL) was observed for the hydrolyzed treatment with B. subtilis. A significant difference (p<0.05) was observed among all the treatments. Results of DPPH radical inhibition showed the highest inhibition was associated with the samples hydrolyzed by B. coagulans (76.6%), and the lowest value was attributed to the hydrolysate by B. licheniformis (57.36%). The sample fermented with B. pumilus exhibited higher reducing power (0.992 absorbance at 700 nm) with a significant difference (p<0.05) observed between the treatments. The highest chelating activity (85.6%) was observed in the sample fermented with B. subtilis. The total antioxidant activity demonstrated that the protein hydrolysate with fermentation by B. coagulans had the highest absorbance value at 695 nm with a significant difference between the treatments (p<0.05). In conclusion, the fermentation of sesame meal protein by Bacillus species resulted in the production of protein hydrolysate with substantial antioxidant activity, positioning it as a promising source for inclusion in food formulations.

کلیدواژه‌ها English

Bacillus
Fermentation
Sesame meal protein hydrolysate
Antioxidant
[1] Organisation mondiale de la santé. 2018. World Health Statistics 2018: Monitoring Health for the SDGs Sustainable Development Goals. World health organization.
[2] Nwachukwu, I.D. and Aluko, R.E. 2019. Structural and functional properties of food protein‐derived antioxidant peptides. Journal of food biochemistry, 43(1), p.e12761.
[3] Ahmed, M., Verma, A. K., & Patel, R. 2020. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustainable Chemistry and Pharmacy, 18, 100315. https://doi.org/10.1016/j.scp.2020.100315.
[4] Leung, R., Venus, C., Zeng, T., & Tsopmo, A. 2018. Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chemistry, 254, 165-169. https://doi.org/10.1016/j.foodchem.2018.01.190.
[5] Chalamaiah, M., Ulug, S. K., Hong, H., & Wu, J. 2019. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods, 58, 123-12. https://doi.org/10.1016/j.jff.2019.04.050.
[6] Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P., & Maqsood, S. 2019. Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. Lwt, 110, 207-213. https://doi.org/10.1016/j.lwt.2019.04.084.
[7] Lu, X., Zhang, L., Sun, Q., Song, G., & Huang, J. 2019. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Research International, 116, 707-716. https://doi.org/10.1016/j.foodres.2018.09.001.
[8] CK Rajendran, S. R., Mohan, A., Khiari, Z., Udenigwe, C. C., & Mason, B. 2018. Yield, physicochemical, and antioxidant properties of Atlantic salmon visceral hydrolysate: Comparison of lactic acid bacterial fermentation with Flavourzyme proteolysis and formic acid treatment. Journal of food processing and preservation, 42(6), e13620.
[9] Jemil, I., Abdelhedi, O., Mora, L., Nasri, R., Aristoy, M. C., Jridi, M., ... & Nasri, M. 2016. Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry, 51(12), 2186-2197. https://doi.org/10.1016/j.procbio.2016.08.021.
[10] Jiang, X., Cui, Z., Wang, L., Xu, H., & Zhang, Y. 2020. Production of bioactive peptides from corn gluten meal by solid-state fermentation with Bacillus subtilis MTCC5480 and evaluation of its antioxidant capacity in vivo. Lwt, 131, 109767. https://doi.org/10.1016/j.lwt.2020.109767.
[11] Chatterjee, R., Dey, T. K., Ghosh, M., & Dhar, P. 2015. Enzymatic modification of sesame seed protein, sourced from waste resource for nutraceutical application. Food and Bioproducts Processing, 94, 70-81. https://doi.org/10.1016/j.fbp.2015.01.007.
[12] Muhialdin, B. J., Rani, N. F. A., & Hussin, A. S. M. 2020. Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes. Lwt, 131, 109776. https://doi.org/10.1016/j.lwt.2020.109776.
[13] Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R. B. S.-B., Mehiri, M., Nasri, M. 2014. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry, 49(6), 963-972. https://doi.org/10.1016/j.procbio.2014.03.004
[14] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), 1198-1205. https://doi.org/10.1016/j.foodchem.2008.10.075.
[15] Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., & Sharma, A. 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry, 121(1), 178-184. https://doi.org/10.1016/j.foodchem.2009.12.027.
[16] Prieto, P., Pineda, M., & Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.
[17] Sanjukta, S., Padhi, S., Sarkar, P., Singh, S. P., Sahoo, D., & Rai, A. K. 2021. Production, characterization and molecular docking of antioxidant peptides from peptidome of kinema fermented with proteolytic Bacillus spp. Food Research International, 141, 110161. https://doi.org/10.1016/j.foodres.2021.110161.
[18] Nasri, R., Abdelhedi, O., Nasri, M., & Jridi, M. 2022. Fermented protein hydrolysates: biological activities and applications. Current Opinion in Food Science, 43, 120-127. https://doi.org/10.1016/j.cofs.2021.11.006.
[19] Jensen, M. P., & Ardö, Y. 2010. Variation in aminopeptidase and aminotransferase activities of six cheese related Lactobacillus helveticus strains. International Dairy Journal, 20(3), 149-155.
[20] Fang, Y., Xu, Z. I., Shi, Y., Pei, F., Yang, W., Ma, N., & Hu, Q. 2017. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264. 7 cells. Food Chemistry, 219, 391-398.
[21] Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R. B. S.-B., Mehiri, M., Nasri, M. 2014. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry, 49(6), 963-972. https://doi.org/10.1016/j.procbio.2014.03.004.
[22] Zhi, T., Li, X., Sadiq, F. A., Mao, K., Gao, J., Mi, S., & Sang, Y. 2022. Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods: Preparation, purification, identification and characterization. LWT, 164, 113636. https://doi.org/10.1016/j.lwt.2022.113636.
[23] Hwang, H. S., & Winkler-Moser, J. K. 2017. Antioxidant activity of amino acids in soybean oil at frying temperature: Structural effects and synergism with tocopherols. Food Chemistry, 221, 1168-1177. https://doi.org/10.1016/j.foodchem.2016.11.042 .
[24] Magro, A. E. A., Silva, L. C., Rasera, G. B., & de Castro, R. J. S. 2019. Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresources and Bioprocessing, 6(1), 1-9.
[25] Torino, M. I., Limón, R. I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., Vidal-Valverde, C., & Frias, J. 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food chemistry, 136(2), 1030-1037. https://doi.org/10.1016/j.foodchem.2012.09.015.

[26] Wali, A., Mijiti, Y., Yanhua, G., Yili, A., Aisa, H. A., & Kawuli, A. 2021. Isolation and identification of a novel antioxidant peptide from chickpea (Cicer arietinum L.) sprout protein hydrolysates. International Journal of Peptide Research and Therapeutics, 27, 219-227.
[27] Khantaphant, S., & Benjakul, S. 2008. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(4), 410-419. https://doi.org/10.1016/j.cbpb.2008.08.011.
[28] Mandel, S., Weinreb, O., Reznichenko, L., Kalfon, L., & Amit, T. 2006. Green tea catechins as brain-permeable, non toxic iron chelators to" iron out iron" from the brain. Journal of Neural Transmission-Supplements only, (71), 249-258.
[29] Fang, Y., Wang, S., Liu, S., Lu, M., Jiao, Y., Chen, G., & Pan, J. 2015. Solid-state fermentation of Acanthogobius hastaprocessing by-products for the production of antioxidant protein hydrolysates with Aspergillus oryzae. Brazilian Archives of Biology and Technology, 58, 343-352. https://doi.org/10.1590/S1516-8913201500297.
[30] Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. 2014. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55. https://doi.org/10.1016/j.peptides.2014.09.001.
[31] Mansor, A. B., Kahar, A. A., Rahman, S. A., Lelamurni, D., & Razak, A. 2014. Distribution and characterization of indigenous microbes from Malaysian fermented fish products. Functional Food Culture.
[32] Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. 2023. Bioactive protein hydrolysates obtained from amaranth by fermentation with lactic acid bacteria and Bacillus species. Heliyon, 9(2).