The impact of temperature and ultrasound on the polyphenols extraction and antioxidant activity of Mozafati, Sayer, and Kabkab date byproduct varieties

Authors
1 PhD Student, Department of Food Science & Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran
2 Professor, Department of Food Science & Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
Abstract
In this study, the effect of ultrasound and temperature at three different levels—30, 50, and 70 °C on the amount of phenolic compounds and antioxidant properties of the extract obtained from the byproducts of three date byproducts—Kabkab, Mozafati, and Sayer were evaluated. In order to conduct a comprehensive assessment of antioxidant activities, three methods including DPPH and H2O2 radical scavenging activities, and ion chelating ability were employed. The Pierson analysis was used to examine the correlation between polyphenolic compounds and antioxidant activities. According to the results, the use of ultrasound treatment enhanced the amount of extracted polyphenols and flavonoids in all date varieties. Furthermore, the polyphenol and flavonoid contents were found to increase up to 50°C during extraction, but subsequently decreased. The highest amount of polyphenols and flavonoids was achieved using the ultrasound treatment in 50° C in Sayer variety, 4.64 ± 0.07 mg Gallic acid/g and 0.326 ± 0.0112 mg quercetin/g, respectively. DPPH and H2O2 radical scavenging activities were increased after ultrasound treatment at 50°C but then decreased (P<0.05). Maximum H2O2 scavenging activity was observed in Mozafati variety. The iron chelating ability decreased after extraction with ultrasound treatment at 30° C and then increased significantly (P<0.05) until reached the maximum amount of 40.433 ± 0.802% in Sayer variety. Results showed a strong correlation between polyphenols and flavonoids with antioxidant activities. Therefore, the antioxidant properties of the tested date byproducts are likely to derive from their polyphenolic content, making them an economical source of these bioactive compounds.
Keywords

Subjects


[1] Sarraf, M., Jemni, M., Kahramanoğlu, I., Artés, F., Shahkoomahally, S., Namsi, A., ... & Rastogi, A. (2021). Commercial techniques for preserving date palm (Phoenix dactylifera) fruit quality and safety: A review. Saudi Journal of Biological Sciences, 28(8), 4408-4420. https://doi.org/10.1016/j.sjbs.2021.04.035
[2] Bagherzadeh Karimi, A., Elmi, A., Zargaran, A., Mirghafourvand, M., Fazljou, S. M. B., Araj-Khodaei, M., & Baghervand Navid, R. (2020). Clinical effects of date palm (Phoenix dactylifera L.): A systematic review on clinical trials. Complementary Therapies in Medicine, 51, 102429. https://doi.org/10.1016/j.ctim.2020.102429.
[3] Abu-Reidah, I. M., Gil-Izquierdo, Á., Medina, S., & Ferreres, F. (2017). Phenolic composition profiling of different edible parts and by-products of date palm (Phoenix dactylifera L.) by using HPLC-DAD-ESI/MSn. Food Research International, 100, 494-500. https://doi.org/10.1016/j.foodres.2016.10.018
[4] Eid, N. M., Al-Awadi, B., Vauzour, D., Oruna-Concha, M. J., & Spencer, J. P. (2013). Effect of cultivar type and ripening on the polyphenol content of date palm fruit. Journal of agricultural and food chemistry, 61(10), 2453-2460. https://doi.org/10.1021/jf303951e.
[5] Mohamed, R. M., Fageer, A. S., Eltayeb, M. M., & Mohamed Ahmed, I. A. (2014). Chemical composition, antioxidant capacity, and mineral extractability of S udanese date palm (Phoenix dactylifera L.) fruits. Food science & nutrition, 2(5), 478-489. https://doi.org/10.1002/fsn3.123.
[6] Sanjukta, S., Rai, A. K., Muhammed, A., Jeyaram, K., & Talukdar, N. C. (2015). Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. Journal of Functional Foods, 14, 650-658. https://doi.org/10.1016/j.jff.2015.02.033.
[7] Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry, 99(1), 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042.
[8] Benmeddour, Z., Mehinagic, E., Le Meurlay, D., & Louaileche, H. (2013). Phenolic composition and antioxidant capacities of ten Algerian date (Phoenix dactylifera L.) cultivars: a comparative study. Journal of Functional Foods, 5(1), 346-354. https://doi.org/10.1016/j.jff.2012.11.005.
[9] Daoud, A., Mnafgui, K., Turki, M., Jmal, S., Ayadi, F., ElFeki, A., bid, L., Rateb, M.E., Kadri, A. & Gharsallah, N. (2017). Cardiopreventive effect of ethanolic extract of date palm pollen against isoproterenol induced myocardial infarction in rats through the inhibition of the angiotensin-converting enzyme. Experimental and toxicologic pathology, 69(8), 656-665. https://doi.org/10.1016/j.etp.2017.06.004.
[10] Khosravi, A., Razavi, S. H., & Fadda, A. M. (2020). Advanced assessments on innovative methods to improve the bioaccessibility of polyphenols in wheat. Process Biochemistry, 88, 1-14. https://doi.org/10.1016/j.procbio.2019.09.005.
[11] Abbès, F., Kchaou, W., Blecker, C., Ongena, M., Lognay, G., Attia, H., & Besbes, S. (2013). Effect of processing conditions on phenolic compounds and antioxidant properties of date syrup. Industrial crops and products, 44, 634-642. https://doi.org/10.1016/j.indcrop.2012.09.008.
[12] Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., & Valéro, J. R. (2011). Solid-state fermentation of apple pomace using Phanerocheate chrysosporium–Liberation and extraction of phenolic antioxidants. Food Chemistry, 126(3), 1071-1080. https://doi.org/10.1016/j.foodchem.2010.11.129.
[13] Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2020). Ethanolic extraction of flavonoids, phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. Journal of King Saud University-Science, 32(1), 7-16. https://doi.org/10.1016/j.jksus.2017.08.001.
[14] Liu, Y. H., Lin, S. Y., Lee, C. C., & Hou, W. C. (2008). Antioxidant and nitric oxide production inhibitory activities of galacturonyl hydroxamic acid. Food chemistry, 109(1), 159-166. https://doi.org/10.1016/j.foodchem.2007.12.055.
[15] Mansouri, A., Embarek, G., Kokkalou, E., & Kefalas, P. (2005). Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food chemistry, 89(3), 411-420. https://doi.org/10.1016/j.foodchem.2004.02.051.
[16] Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003-1008. https://doi.org/10.1093/carcin/10.6.1003.
[17] Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and food Chemistry, 38(3), 674-677. https://doi.org/10.1021/jf00093a019.
[18] Saharan, P., Sadh, P. K., & Duhan, J. S. (2017). Comparative assessment of effect of fermentation on phenolics, flavanoids and free radical scavenging activity of commonly used cereals. Biocatalysis and Agricultural Biotechnology, 12, 236-240. https://doi.org/10.1016/j.bcab.2017.10.013.
[19] Nematallah, K. A., Ayoub, N. A., Abdelsattar, E., Meselhy, M. R., Elmazar, M. M., El-Khatib, A. H., Linscheid, M.W., Hathout, R.M., Godugu, K., Adel, A. & Mousa, S. A. (2018). Polyphenols LC-MS2 profile of Ajwa date fruit (Phoenix dactylifera L.) and their microemulsion: Potential impact on hepatic fibrosis. Journal of functional foods, 49, 401-411. https://doi.org/10.1016/j.jff.2018.08.032.
[20] Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valéro, J. R. (2011). Extraction and analysis of polyphenols: recent trends. Critical reviews in biotechnology, 31(3), 227-249. https://doi.org/10.3109/07388551.2010.513677.
[21] Izadifar, Z. (2013). Ultrasound pretreatment of wheat dried distiller’s grain (DDG) for extraction of phenolic compounds. Ultrasonics sonochemistry, 20(6), 1359-1369. https://doi.org/10.1016/j.ultsonch.2013.04.004.
[22] Zhong, X., Zhang, S., Wang, H., Yang, J., Li, L., Zhu, J., & Liu, Y. (2022). Ultrasound-alkaline combined extraction improves the release of bound polyphenols from pitahaya (Hylocereus undatus' Foo-Lon') peel: Composition, antioxidant activities and enzyme inhibitory activity. Ultrasonics Sonochemistry, 106213. https://doi.org/10.2139/ssrn.4222850.
[23] Sadh, P. K., Chawla, P., & Duhan, J. S. (2018). Fermentation approach on phenolic, antioxidants and functional properties of peanut press cake. Food bioscience, 22, 113-120. https://doi.org/10.1016/j.fbio.2018.01.011.
[24] Hachani, S., Hamia, C., Boukhalkhal, S., Silva, A. M., Djeridane, A., & Yousfi, M. (2018). Morphological, physico-chemical characteristics and effects of extraction solvents on UHPLC-DAD-ESI-MSn profiling of phenolic contents and antioxidant activities of five date cultivars (Phoenix dactylifera L.) growing in Algeria. NFS journal, 13, 10-22. https://doi.org/10.1016/j.nfs.2018.10.001.
[25] Sanou, A., Konaté, K., Kabakdé, K., Dakuyo, R., Bazié, D., Hemayoro, S., & Dicko, M.H. (2023). Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. Scientific Reports, 13(1), 358. https://doi.org/10.1038/s41598-023-27434-5.
[26] Islam, T., Yu, X., & Xu, B. (2016). Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT-Food Science and Technology, 72, 423-431. http://dx.doi.org/10.1016/j.lwt.2016.05.005.
[27] Sánchez-Vioque, R., Polissiou, M., Astraka, K., De Los Mozos-Pascual, M., Tarantilis, P., Herraiz-Peñalver, D., & Santana-Méridas, O. (2013). Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Industrial Crops and Products, 49,150-159. http://dx.doi.org/10.1016/j.indcrop.2013.04.053.
[28] Nagulendran, K.R., Velavan, S., Mahesh, R., & Begum, V.H. (2007). In vitro antioxidant activity and total polyphenolic content of Cyperus rotundus rhizomes. Journal of Chemistry, 4, 440-449.
[29] Xiao, Y., Xing, G., Rui, X., Li, W., Chen, X., Jiang, M., & Dong, M. (2014). Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. Journal of functional foods, 10, 210-222. https://doi.org/10.1016/j.jff.2014.06.008.