بررسی خواص فیزیکوشیمیایی نشاسته پری‌ژلاتینه تولید شده از نشاسته بلوط (زاگرس) با استفاده از خشک کن تک غلطکی

نویسندگان
1 سازمان پژوهش های علمی و صنعتی ایران
2 گروه صنایع غذایی و تبدیلی، پژوهشکده فناوری های شیمیایی، سازمان پژوهش های علمی و صنعتی ایران، تهران، ایران
3 گروه مهندسی علوم و صنایع غذایی، دانشکده مهندسی صنایع و مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
چکیده
هدف از این تحقیق بررسی تاثیر تغییرات دوغاب نشاسته با غلظت 30 ،50 و70 درصد ماده خشک نشاسته بلوط پری‌ژلاتینه شده با استفاده از خشک کن تک غلطکی در دمای غلطک 120 درجه سانتی گراد و سرعت 20 دور بر دقیقه که به ترتیبPGS30 ، PGS50وPGS70 نام­گذاری گردیده، بر خواص فیزیکی و شیمیایی شامل ویسکوزیته، هیدراتاسیون، پایداری انجماد و ذوب، درجه ژلاتینه شدن، موفولوژی و طیف سنجی ساختار نشاسته می­باشد. ویژگی­های رئولوژیکی با استفاده از دستگاه آنالیز سریع ویسکوزیته بر اساس تابعی از دما ارزیابی شد. نشاسته­های پری‌ژلاتینه در دمای 25 درجه سانتی گراد در آب سرد از خود ویسکوزیته نشان دادند ولی نشاسته طبیعی بلوط در دمای محیط ویسکوزیته ای از خود نشان نداد. نشاسته طبیعی با افزایش دما به تدریج شروع به جذب آب کرد. به طوری که بیشترین ویسکوزیته (اوج) را به ترتیب نشاسته طبیعی بلوط، PGS30، PGS50و PGS70 ایجاد کردند. گرانول نشاسته خام بلوط دارای سطح صاف و شکل غیر همگن (عمدتا بیضوی و کروی) و همچنین دارای حفره­های سطحی و چین و چروک می باشند. مورفولو­ژی نشاسته­های پری‌ژلاتینه به طور قابل توجهی تغییر کرد به طوری که گرانول نمونه­های PGS50 و PGS70 به صورت پیوسته و متخلخل و با ساختاری شبیه به لانه زنبوری بود و هیچ گونه تغییر معنی داری در میزان آب اندازی پایداری انجماد ذوب نسبت به نشاسته طبیعی رخ نداد (05/0<p). ارزیابی طیف سنجی نشاسته طبیعی با نمونه های PGS تا بازه طیفیcm-13343 مطابقت داشت. ولی در نمونه های PGS50و PGS70 چندین بازه طیفی در محدود 3747 الی 3945 رخ داد که بیان گر ژلاتینه شدن کامل این دو نمونه می باشد. نشاسته های پری‌ژلاتینه هم چنین دارای قدرت تورم، جذب آب و حلالیت بیشتری نسبت به نشاسته طبیعی می­باشند (05/0p).

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the physicochemical properties of pregelatinized starch produced from acorn starch (Zagors) by using single drum drying

نویسندگان English

Majid javanmard 1
Abolfazl Bayati 2
Mohammad Hasan Eikani 2
Akram Sharifi 3
1 , Iranian Research Organization for Science & Technology (IROST)
2 1Department of Food Science, Institute of Chemical Engineering, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
3 2Department of Food Science and Technology, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده English

The purpose of this research is to investigate the effect of the changes in the starch slurry with the concentration of 30, 50 and 70% of dry substance of pregelatinized acorn starch using a single drum dryer at a drum temperature of 120°C and a speed of 20 rpm which is called PGS30, PGS50 and PGS70 in order on physical and chemical properties including viscosity, hydration, freezing and melting stability, degree of gelatinization, morphology and FTIR.The rheological properties were evaluated using a rapid viscosity analyzer as a function of temperature. Pregelatinized starches showed viscosity at 25°C in cold water, but native acorn starch did not show viscosity at room temperature. Native acorn starch gradually started to absorb water as the temperature increased. So that the highest viscosity (peak) was created by native acorn starch, PGS30, PGS50 and PGS70 respectively. Native acorn starch granules have a smooth surface and non-homogeneous shape (mostly oval and spherical) and also have surface cavities and wrinkles. The morphology of pregelatinized starches changed significantly so that the granules of PGS50 and PGS70 samples are continuous and porous with a honeycomb-like structure. And there was no significant change in freezing-thaw stability compared to native acorn starch (p<0.05). The spectroscopic evaluation of native acorn starch was consistent with PGS samples up to the spectral range of 13343 cm. But in the PGS70 and PGS50 samples, several spectral intervals occurred between 3747 and 3945, which indicates the complete gelatinization of these two samples. Pregelatinized starches also have more swelling power, water absorption and solubility than native acorn starch (p≥0.05).

کلیدواژه‌ها English

Acorn
Native acorn starch
pregelatinized starch
single drum dryer
degree of gelatinization
1. M Majzoobi SHM, S H Asadi-Yousofabad2andA Farahnaky1. Effects of acorn flour on the properties of dough and Barbari bread. Food industry research/. 2012;2:272.
2. Rakić S, Petrović S, Kukić J, Jadranin M, Tešević V, Povrenović D, et al. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chemistry. 2007;104(2):830-4.
3. Pithayanukul P, Ruenraroengsak P, Bavovada R, Pakmanee N, Suttisri R, Saen-oon S. Inhibition of Naja kaouthia venom activities by plant polyphenols. Journal of ethnopharmacology. 2005;97(3):527-33.
4. Stevenson DG, Jane Jl, Inglett GE. Physicochemical properties of pin oak (Quercus palustris Muenchh.) acorn starch. Starch‐Stärke. 2006;58(11):553-60.
5. Banks W, Geddes R, Greenwood C, Jones I. Physicochemical studies on starches. Part 63. The molecular size and shape of amylopectin. Starch‐Stärke. 1972;24(8):245-51.
6. Buleon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis. International journal of biological macromolecules. 1998;23(2):85-112.
7. Colonna P, Doublier J, Melcion J, De Monredon F, Mercier C. Extrusion cooking and drum drying of wheat starch. Cereal Chemistry. 1984;61(6):538-54.
8. Majzoobi M, Radi M, Farahnaky A, Jamalian J, Tongtang T, Mesbahi G. Physicochemical properties of pre-gelatinized wheat starch produced by a twin drum drier. Journal of Agricultural Science and Technology. 2011;13(2):193-202.
9. Singh N, Kaur L, Sandhu KS, Kaur J, Nishinari K. Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food hydrocolloids. 2006;20(4):532-42.
10. Rosa Z, Dias A. Impact of heat–moisture treatmentand annealing in starches: areview. Carbohydrate Polymers. 2011;83:317-28.
11. Mounsey JS, O’Riordan ED. Influence of pre-gelatinised maize starch on the rheology, microstructure and processing of imitation cheese. Journal of Food Engineering. 2008;84(1):57-64.
12. Kalogianni E, Xynogalos V, Karapantsios T, Kostoglou M. Effect of feed concentration on the production of pregelatinized starch in a double drum dryer. LWT-Food Science and Technology. 2002;35(8):703-14.
13. Anastasiades A, Thanou S, Loulis D, Stapatoris A, Karapantsios T. Rheological and physical characterization of pregelatinized maize starches. Journal of Food Engineering. 2002;52(1):57-66.
14. Mercier C, editor Comparative modifications of starch and starchy products by extrusion-cooking and drum drying. Symposium international; 1985: Elsevier Ltd.
15. Harper J. Extrusion of Foods CRC Press. Boca Raton, FL. 1981:3-6.
16. Kadan RS, Pepperman AB. Physicochemical properties of starch in extruded rice flours. Cereal Chemistry. 2002;79(4):476-80.
17. Zia-ud-Din, Xiong H, Fei P. Physical and chemical modification of starches: A review. Critical reviews in food science and nutrition. 2017;57(12):2691-705.
18. Starches. [press release]. New York1999.
19. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food research international. 2007;40(9):1107-21.
20. Laovachirasuwan P, Peerapattana J, Srijesdaruk V, Chitropas P, Otsuka M. The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids and Surfaces B: Biointerfaces. 2010;78(1):30-5.
21. Lai H-M. Effects of hydrothermal treatment on the physicochemical properties of pregelatinized rice flour. Food Chemistry. 2001;72(4):455-63.
22. Zhang Y, Huang Z, Yang C, Huang A, Hu H, Gong Z, et al. Material properties of partially pregelatinized cassava starch prepared by mechanical activation. Starch‐Stärke. 2013;65(5‐6):461-8.
23. Haghayegh G, Schoenlechner R. Physically modified starches: a review. Journal of Food, Agriculture & Environment. 2011;9(1):27-9.
24. Fu Z-q, Wang L-j, Li D, Adhikari B. Effects of partial gelatinization on structure and thermal properties of corn starch after spray drying. Carbohydrate Polymers. 2012;88(4):1319-25.
25. Bayati A, Javanmard M, Eikani MH, Sharifi A. The Effect of Starch Isolation Method on Morphological and Physicochemical Properties of Zagros Oak (Quercus brantii var. Persica) Starch. Starch‐Stärke. 2022:2200016.
26. Saberi B, Majzoobi M, Farahnaki A. Effect of hydroxypropylation on. 2013.
27. Villanueva M, De Lamo B, Harasym J, Ronda F. Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches. Carbohydrate Polymers. 2018;201:374-81.
28. Wang J, Su L, Wang S. Physicochemical properties of octenyl succinic anhydride‐modified potato starch with different degrees of substitution. Journal of the Science of Food and Agriculture. 2010;90(3):424-9.
29. Liu Y, Chen J, Luo S, Li C, Ye J, Liu C, et al. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydrate Polymers. 2017;175:265-72.
30. Tessema A, Admassu H. Extraction and characterization of starch from anchote (Coccinia abyssinica): physico-chemical, functional, morphological and crystalline properties. Journal of Food Measurement and Characterization. 2021;15(4):3096-110.
31. BeMiller JN. Pasting, paste, and gel properties of starch–hydrocolloid combinations. Carbohydrate polymers. 2011;86(2):386-423.
32. Satrapai S, Suphantharika M. Influence of spent brewer’s yeast β-glucan on gelatinization and retrogradation of rice starch. Carbohydrate Polymers. 2007;67(4):500-10.
33. Singh J, Kaur L, McCarthy O. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food hydrocolloids. 2007;21(1):1-22.
34. Tukomane T, Leerapongnun P, Shobsngob S, Varavinit S. Preparation and characterization of annealed‐enzymatically hydrolyzed tapioca starch and the utilization in tableting. Starch‐Stärke. 2007;59(1):33-45.
35. Ye J, Hu X, Luo S, Liu W, Chen J, Zeng Z, et al. Properties of starch after extrusion: a review. Starch‐Stärke. 2018;70(11-12):1700110.
36. Sarawong C, Schoenlechner R, Sekiguchi K, Berghofer E, Ng PK. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food chemistry. 2014;143:33-9.
37. Altan A, McCarthy K, Maskan M. Effect of extrusion cooking on functional properties and in vitro starch digestibility of barley‐based extrudates from fruit and vegetable by‐products. Journal of Food Science. 2009;74(2):E77-E86.
38. Pérez-Pacheco E, Moo-Huchin V, Estrada-León R, Ortiz-Fernández A, May-Hernández L, Ríos-Soberanis C, et al. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbohydrate polymers. 2014;101:920-7.
39. White P, Abbas I, Johnson L. Freeze‐thaw stability and refrigerated‐storage retrogradation of starches. Starch‐Stärke. 1989;41(5):176-80.
40. Woodruff S, MacMasters MM. Gelatinization and retrogradation changes in corn and wheat starches shown by photomicrographs. Bulletin (University of Illinois (Urbana-Champaign campus) Agricultural Experiment Station); no 445. 1938.
41. Gomez M, Aguilera J. A physicochemical model for extrusion of corn starch. Journal of Food Science. 1984;49(1):40-3.
42. Roos YH, Drusch S. Phase transitions in foods: Academic Press; 2015.
43. Iturriaga L, Lopez B, Añon Ma. Thermal and physicochemical characterization of seven argentine rice flours and starches. Food Research International. 2004;37(5):439-47.
44. Giovanelli G, Peri C, Borri V. Effects of baking temperature on crumb‐staling kinetics. Cereal Chemistry. 1997;74(6):710-4.
45. Salehifar M, Seyedein Ardebili M, Azizi M. gelatinization and staling of Iranian Lavash and Taftoon breads. Iranian Journal of Nutrition Sciences & Food Technology. 2009;4(2):13-24.
46. Boukhelkhal M, Moulai-Mostefa N. Physicochemical characterization of starch isolated from soft acorns of holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) grown in Algeria. Journal of Food Measurement and Characterization. 2017;11(4):1995-2005.
47. Correia PM, Cruz-Lopes L, Beirão-da-Costa L. Morphology and structure of acorn starches isolated by enzymatic and alkaline methods. Open Agriculture. 2021;6(1):37-46.
48. León-Camacho M, Viera-Alcaide I, Vicario IM. Acorn (Quercus spp.) fruit lipids: saponifiable and unsaponifiable fractions: a detailed study. Journal of the American Oil Chemists' Society. 2004;81(5):447-53.
49. Correia PR, Nunes MC, Beirão-da-Costa ML. The effect of starch isolation method on physical and functional properties of Portuguese nut starches. II. Q. rotundifolia Lam. and Q. suber Lam. acorns starches. Food hydrocolloids. 2013;30(1):448-55.
50. Majzoobi M, Radi M, Farahnaky A, Tongdang T. Effects of L‐Ascorbic acid on physicochemical characteristics of wheat starch. Journal of Food Science. 2012;77(3):C314-C8.
51. Alamilla-Beltran L, Chanona-Perez JJ, Jimenez-Aparicio AR, Gutierrez-Lopez GF. Description of morphological changes of particles along spray drying. Journal of Food Engineering. 2005;67(1-2):179-84.
52. Li Q, Liu S, Obadi M, Jiang Y, Zhao F, Jiang S, et al. The impact of starch degradation induced by pre-gelatinization treatment on the quality of noodles. Food chemistry. 2020;302:125267.
53. Li W, Cao F, Fan J, Ouyang S, Luo Q, Zheng J, et al. Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids. 2014;40:237-44.
54. Nakorn KN, Tongdang T, Sirivongpaisal P. Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch‐Stärke. 2009;61(2):101-8.
55. Dos Santos TPR, Franco CML, Demiate IM, Li X-H, Garcia EL, Jane J-l, et al. Spray-drying and extrusion processes: Effects on morphology and physicochemical characteristics of starches isolated from Peruvian carrot and cassava. International journal of biological macromolecules. 2018;118:1346-53.