1- Duman, O., & Tunç, S. (2009). Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions. Microporous and Mesoporous Materials, 117(1-2), 331-338
2- Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17(2), 629-654.
3- Moosavi, M. (2017). Bentonite clay as a natural remedy: a brief review. Iranian journal of public health, 46(9), 1176.
4- Uddin, F. (2018). Montmorillonite: An introduction to properties and utilization (pp. 3-23). London: IntechOpen
5- Dehn, J., & McNutt, S. R. (2015). Volcanic materials in commerce and industry. In The encyclopedia of volcanoes (pp. 1285-1294). Academic Press.
6- Prabhu, P. P., & Prabhu, B. (2018). A review on removal of heavy metal ions from waste water using natural/modified bentonite. In MATEC Web of conferences (Vol. 144, p. 02021). EDP Sciences.
7- Karimi, L., & Salem, A. (2011). The role of bentonite particle size distribution on kinetic of cation exchange capacity. Journal of Industrial and Engineering Chemistry, 17(1), 90-95.
8- Açışlı, Ö., Karaca, S., & Gürses, A. (2017). Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions. Applied Clay Science, 142, 90-99.
9- Liao, L., Lv, G., Cai, D., & Wu, L. (2016). The sequential intercalation of three types of surfactants into sodium montmorillonite. Applied Clay Science, 119, 82-86.
10- Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239-258.
11- Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., ... & Ayoko, G. A. (2016). Adsorption of phenol and Cu (II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, 880-888.
12- Almasri, D. A., Rhadfi, T., Atieh, M. A., McKay, G., & Ahzi, S. (2018). High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chemical engineering journal, 335, 1-12.
13- Bertuoli, P. T., Piazza, D., Scienza, L. C., & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 46-51.
14- Kon’kova, T. V., Rysev, A. P., & Mishchenko, E. V. (2020). Mechanism of Inversion of Montmorillonite Sorption Properties by Cationic Surfactant. Inorganic Materials: Applied Research, 11(5), 1110-1115.
15- Mei, L., Tao, H., He, C., Xin, X., Liao, L., Wu, L., & Lv, G. (2015). Cd2+ Exchange for Na+ and K+ in the Interlayer of Montmorillonite: Experiment and Molecular Simulation. Journal of Nanomaterials, 2015.
16- Ltifi, I., Ayari, F., Chehimi, D. B. H., & Ayadi, M. T. (2018). Physicochemical characteristics of organophilic clays prepared using two organo-modifiers: alkylammonium cation arrangement models. Applied Water Science, 8(3), 1-8.
17- Fu, M., Zhang, Z., Wu, L., Zhuang, G., Zhang, S., Yuan, J., & Liao, L. (2016). Investigation on the co-modification process of montmorillonite by anionic and cationic surfactants. Applied Clay Science, 132, 694-701.
18- Kim, D. G., Song, D. I., & Jeon, Y. W. (2001). pH-dependent sorptions of phenolic compounds onto montmorillonite modified with hexadecyltrimethylammonium cation. Separation Science and Technology, 36(14), 3159-3174.
19- Abbas, A., Sallam, A. S., Usman, A. R., & Al-Wabel, M. I. (2017). Organoclay-based nanoparticles from montmorillonite and natural clay deposits: Synthesis, characteristics, and application for MTBE removal. Applied Clay Science, 142, 21-29.
20- Zhu, R., Zhou, Q., Zhu, J., Xi, Y., & He, H. (2015). Organo-clays as sorbents of hydrophobic organic contaminants: sorptive characteristics and approaches to enhancing sorption capacity. Clays and Clay Minerals, 63(3), 199-221.
21- Zhu, R., Chen, Q., Liu, H., Ge, F., Zhu, L., Zhu, J., & He, H. (2014). Montmorillonite as a multifunctional adsorbent can simultaneously remove crystal violet, cetyltrimethylammonium, and 2-naphthol from water. Applied clay science, 88, 33-38.
22- Okada, T., Seki, Y., & Ogawa, M. (2014). Designed nanostructures of clay for controlled adsorption of organic compounds. Journal of Nanoscience and Nanotechnology, 14(3), 2121-2134.
23- He, H., Ma, Y., Zhu, J., Yuan, P., & Qing, Y. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied clay science, 48(1-2), 67-72.
24- Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in polymer science, 28(11), 1539-1641.
25- Ishii, R., Nakatsuji, M., & Ooi, K. (2005). Preparation of highly porous silica nanocomposites from clay mineral: a new approach using pillaring method combined with selective leaching. Microporous and mesoporous materials, 79(1-3), 111-119.
26- Xie, W., Gao, Z., Liu, K., Pan, W. P., Vaia, R., Hunter, D., & Singh, A. (2001). Thermal characterization of organically modified montmorillonite. Thermochimica Acta, 367, 339-350.
27- Park, Y., Ayoko, G. A., Kristof, J., Horváth, E., & Frost, R. L. (2012). A thermoanalytical assessment of an organoclay. Journal of thermal analysis and calorimetry, 107(3), 1137-1142.
28- Seid-Mohammadi, A., Rahmani, A. R., Asgari, G., Bajalan, S., & Shabanloo, A. (2017). Comparison performance of raw and cationic surfactant modified nanoclay in removal of 4-chlorophenol from aqueous solutions. Iranian Journal of Health and Environment, 10(1).
29- Chanra, J., Budianto, E., & Soegijono, B. (2019, April). Surface modification of montmorillonite by the use of organic cations via conventional ion exchange method. In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012057). IOP Publishing.
30- Vazquez, A., López, M., Kortaberria, G., Martín, L., & Mondragon, I. (2008). Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination. Applied Clay Science, 41(1-2), 24-36.
31- Veiskarami, M., Sarvi, M. N., & Mokhtari, A. R. (2016). Influence of the purity of montmorillonite on its surface modification with an alkyl-ammonium salt. Applied Clay Science, 120, 111-120.
32- Hezarjaribi, A., Nosrati, K. F., Abdollahnezhad, K., & Ghorbani, K. (2013). The prediction possibility of soil cation exchange capacity by using of easily accessible soil parameters. Journal of Water and Soil, 712-719.
33- Chapman, H. D. (1965). Cation‐exchange capacity. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 891-901.
34- Alkaram, U. F., Mukhlis, A. A., & Al-Dujaili, A. H. (2009). The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. Journal of Hazardous Materials, 169(1-3), 324-332.
35- Dos Santos, A., Viante, M. F., Pochapski, D. J., Downs, A. J., & Almeida, C. A. P. (2018). Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modified with a cationic surfactant. Journal of hazardous materials, 355, 136-144.
36- Widjonarko, D. M., Mayasari, O. D., Wahyuningsih, S., & Nugrahaningtyas, K. D. (2018, March). Modification of Montmorillonite with Cetyl Trimethylammonium Bromide and Tetra Ethyl Ortho Silicate. In IOP Conference Series: Materials Science and Engineering (Vol. 333, No. 1, p. 012048). IOP Publishing.
37- Kıranşan, M., Soltani, R. D. C., Hassani, A., Karaca, S., & Khataee, A. (2014). Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye. Journal of the Taiwan Institute of chemical engineers, 45(5), 2565-2577.
38- Karaca, S., Gürses, A., & Ejder Korucu, M. (2013). Investigation of the orientation of CTA+ ions in the interlayer of CTAB pillared montmorillonite. Journal of Chemistry, 2013.
39- Kumar, C. S. (Ed.). (2010). Biomimetic and bioinspired nanomaterials. John Wiley & Sons.
40- Wu, P., Dai, Y., Long, H., Zhu, N., Li, P., Wu, J., & Dang, Z. (2012). Characterization of organo-montmorillonites and comparison for Sr (II) removal: equilibrium and kinetic studies. Chemical Engineering Journal, 191, 288-296.
41- Xi, Y., Ding, Z., He, H., & Frost, R. L. (2004). Structure of organoclays—an X-ray diffraction and thermogravimetric analysis study. Journal of Colloid and Interface Science, 277(1), 116-120.
42- He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., & Frost, R. L. (2005). Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53(3), 287-293.
43- Park, Y., Frost, R. L., Ayoko, G. A., & Morgan, D. L. (2013). Adsorption of p-nitrophenol on organoclays. Journal of thermal analysis and calorimetry, 111(1), 41-47.
44- Ahmat, A. M., Thiebault, T., & Guégan, R. (2019). Phenolic acids interactions with clay minerals: A spotlight on the adsorption mechanisms of Gallic Acid onto montmorillonite. Applied Clay Science, 180, 105188.
45- Xi, Y., Martens, W., He, H., & Frost, R. L. (2005). Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. Journal of Thermal Analysis and Calorimetry, 81(1), 91-97.
46- Muñoz-Shugulí, C., Rodríguez, F. J., Bruna, J. E., Galotto, M. J., Sarantópoulos, C., Perez, M. A. F., & Padula, M. (2019). Cetylpyridinium bromide-modified montmorillonite as filler in low density polyethylene nanocomposite films. Applied Clay Science, 168, 203-210.
47- Abolghasemi Fakhri, L., Ghanbarzadeh, B., Dehghannia, J., & Entezami, A. A. (2012). Effect of Nanoclay (Montmorillonite) on Water Vapour Permeability, Contact Angle and Thermal Properties of Carboxymethyl Cellulose-polyvinyl Alcohol Based Nanocomposite Films. Iranian Journal Food Science and Technology Research, 8(4).
48- Shah, K. J., Mishra, M. K., Shukla, A. D., Imae, T., & Shah, D. O. (2013). Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of colloid and interface science, 407, 493-499.
49- Nasr, E. A. R., Daneshi, S. J., & Farmanesh, K. (2010). Zeta potential effect of the method of sedimentation in nanocomposite coatings produced by pulse electrodeposition process.