بررسی خصوصیات فیزیکوشیمیایی مونت موریلونیت اصلاح شده با سورفاکتانت کاتیونی

نویسندگان
1 دانشجوی دکتری، گروه مهندسی مواد و طراحی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
2 استاد، گروه مهندسی مواد و طراحی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
3 دانشیار، گروه مهندسی مواد و طراحی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
4 استادیار، گروه شیمی موادغذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
5 دانشیار، گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه گلستان، علی آباد کتول، ایران.
چکیده
در این تحقیق، مونت موریلوینت ([1]MMT) با هدف افزایش پتانسیل جذب و بهبود ویژگی‌های عملکردی آن با استفاده از جایگزینی سورفاکتانت کاتیونی هگزادسیل تری متیل آمونیوم برومید ([2]HDTMA) با کاتیون‌های بین لایه‌ای اصلاح شد. جهت بررسی جذب سورفاکتانت به MMT و تعیین ویژگی‌های MMT قبل و بعد از اصلاح شدن، از آنالیزهای دستگاهی پراش اشعه ایکس ([3]XRD)، طیف سنجی تبدیل مادون قرمز فوریه ([4]FTIR)، آنالیز توزین حرارتی و مشتق آن (TGA/DTA[5])، زاویه تماس و پتانسیل زتا استفاده شد. یافته های XRD نشان از افزایش فاصله بین لایه‌های MMT از 17/1 به 02/2 نانومتر به خاطر ورود HDTMA داشت. آنالیزهای زاویه تماس و پتانسیل زتا به ترتیب تغییر ویژگی آب‌دوستی سطح MMT به آب‌گریز و افزایش بار سطحی از 6/21- به 54/2- میلی ولت را نشان داد که تأیید کننده حضور HDTMA بر سطح MMT می‌باشد. پیک‌های حاصل از آنالیزهای FTIR تأیید کننده ورود زنجیره‌های آلکیل سورفاکتانت کاتیونی به فضای بین لایه‌ای MMT است. آنالیز TGA/DTA نیز برهم‌کنش MMT و سورفاکتانت را ثابت کرد. یافته‌های این تحقیق در جهت کاربرد MMT اصلاح شده به عنوان نانوجاذب در صنایع غذایی، شیمیایی و دارویی می‌باشد.


[1] Montmorillonite

[2] Hexa decyl trimethyl ammonium bromide

[3] X-ray diffraction

[4] Fourier-transform infrared spectroscopy

[5] Thermal gravimetric analysis










کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of physico-chemical properties of montmorillonite modified with cationic surfactant

نویسندگان English

Sara Arabmofrad 1
Seid Mahdi Jafari 2
Aman Mohamad Ziaiifa 3
Hoda Shahiri Tabarestani 4
Ghasem Bahlakeh 5
1 PhD. student, Department of Food Materials and Process Design Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Professor, Department of Food Materials and Process Design Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Associate Professor, Department of Food Materials and Process Design Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Assistant professor, Department of Food chemistry, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
5 Assistant professor, Department of Chemical Engineering, Faculty of Engineering, Golestan university, Aliabad Katoul.
چکیده English

In this study, montmorillonite (MMT) was modified by hexadecyltrimethyl ammonium bromide (HDTMA) to enhance its adsorption capacity and improve its functional properties that it was done through conventional ion exchange. The intercalation of cationic surfactant into layers of MMT and properties of MMT before and after modification was evaluated by Fourier transform infrared (FTIR), X-ray diffraction (XRD) spectroscopy, Thermal gravimetric analysis, contact angle, and zeta potential. The XRD results showed the interlayer spacing was increased from 1.17 to 2.02 nm due to intercalation of HDTMA. The contact angle and zeta potential analyses revealed that the surface wettability of MMT was changed from hydrophilic to hydrophobic and the surface charge was changed from -21.6 to -2.54 due to adsorption of HDTAM on surface of MMT. FTIR spectra show the successful of inserting alkyl groups from cationic surfactant in the interlayer space of MMT. The results are supported by the measurements of TGA/DTA. The findings of this study are useful for the application of modified MMT as a nanoadsorbent for food, chemical, and pharmaceutical industries.

کلیدواژه‌ها English

Montmorillonite
Cationic surfactant
Purification
Modification
1- Duman, O., & Tunç, S. (2009). Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions. Microporous and Mesoporous Materials, 117(1-2), 331-338
2- Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17(2), 629-654.
3- Moosavi, M. (2017). Bentonite clay as a natural remedy: a brief review. Iranian journal of public health, 46(9), 1176.
4- Uddin, F. (2018). Montmorillonite: An introduction to properties and utilization (pp. 3-23). London: IntechOpen
5- Dehn, J., & McNutt, S. R. (2015). Volcanic materials in commerce and industry. In The encyclopedia of volcanoes (pp. 1285-1294). Academic Press.
6- Prabhu, P. P., & Prabhu, B. (2018). A review on removal of heavy metal ions from waste water using natural/modified bentonite. In MATEC Web of conferences (Vol. 144, p. 02021). EDP Sciences.
7- Karimi, L., & Salem, A. (2011). The role of bentonite particle size distribution on kinetic of cation exchange capacity. Journal of Industrial and Engineering Chemistry, 17(1), 90-95.
8- Açışlı, Ö., Karaca, S., & Gürses, A. (2017). Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions. Applied Clay Science, 142, 90-99.
9- Liao, L., Lv, G., Cai, D., & Wu, L. (2016). The sequential intercalation of three types of surfactants into sodium montmorillonite. Applied Clay Science, 119, 82-86.
10- Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239-258.
11- Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., ... & Ayoko, G. A. (2016). Adsorption of phenol and Cu (II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, 880-888.
12- Almasri, D. A., Rhadfi, T., Atieh, M. A., McKay, G., & Ahzi, S. (2018). High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chemical engineering journal, 335, 1-12.
13- Bertuoli, P. T., Piazza, D., Scienza, L. C., & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 46-51.
14- Kon’kova, T. V., Rysev, A. P., & Mishchenko, E. V. (2020). Mechanism of Inversion of Montmorillonite Sorption Properties by Cationic Surfactant. Inorganic Materials: Applied Research, 11(5), 1110-1115.
15- Mei, L., Tao, H., He, C., Xin, X., Liao, L., Wu, L., & Lv, G. (2015). Cd2+ Exchange for Na+ and K+ in the Interlayer of Montmorillonite: Experiment and Molecular Simulation. Journal of Nanomaterials, 2015.
16- Ltifi, I., Ayari, F., Chehimi, D. B. H., & Ayadi, M. T. (2018). Physicochemical characteristics of organophilic clays prepared using two organo-modifiers: alkylammonium cation arrangement models. Applied Water Science, 8(3), 1-8.
17- Fu, M., Zhang, Z., Wu, L., Zhuang, G., Zhang, S., Yuan, J., & Liao, L. (2016). Investigation on the co-modification process of montmorillonite by anionic and cationic surfactants. Applied Clay Science, 132, 694-701.
18- Kim, D. G., Song, D. I., & Jeon, Y. W. (2001). pH-dependent sorptions of phenolic compounds onto montmorillonite modified with hexadecyltrimethylammonium cation. Separation Science and Technology, 36(14), 3159-3174.
19- Abbas, A., Sallam, A. S., Usman, A. R., & Al-Wabel, M. I. (2017). Organoclay-based nanoparticles from montmorillonite and natural clay deposits: Synthesis, characteristics, and application for MTBE removal. Applied Clay Science, 142, 21-29.
20- Zhu, R., Zhou, Q., Zhu, J., Xi, Y., & He, H. (2015). Organo-clays as sorbents of hydrophobic organic contaminants: sorptive characteristics and approaches to enhancing sorption capacity. Clays and Clay Minerals, 63(3), 199-221.
21- Zhu, R., Chen, Q., Liu, H., Ge, F., Zhu, L., Zhu, J., & He, H. (2014). Montmorillonite as a multifunctional adsorbent can simultaneously remove crystal violet, cetyltrimethylammonium, and 2-naphthol from water. Applied clay science, 88, 33-38.
22- Okada, T., Seki, Y., & Ogawa, M. (2014). Designed nanostructures of clay for controlled adsorption of organic compounds. Journal of Nanoscience and Nanotechnology, 14(3), 2121-2134.
23- He, H., Ma, Y., Zhu, J., Yuan, P., & Qing, Y. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied clay science, 48(1-2), 67-72.
24- Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in polymer science, 28(11), 1539-1641.
25- Ishii, R., Nakatsuji, M., & Ooi, K. (2005). Preparation of highly porous silica nanocomposites from clay mineral: a new approach using pillaring method combined with selective leaching. Microporous and mesoporous materials, 79(1-3), 111-119.
26- Xie, W., Gao, Z., Liu, K., Pan, W. P., Vaia, R., Hunter, D., & Singh, A. (2001). Thermal characterization of organically modified montmorillonite. Thermochimica Acta, 367, 339-350.
27- Park, Y., Ayoko, G. A., Kristof, J., Horváth, E., & Frost, R. L. (2012). A thermoanalytical assessment of an organoclay. Journal of thermal analysis and calorimetry, 107(3), 1137-1142.
28- Seid-Mohammadi, A., Rahmani, A. R., Asgari, G., Bajalan, S., & Shabanloo, A. (2017). Comparison performance of raw and cationic surfactant modified nanoclay in removal of 4-chlorophenol from aqueous solutions. Iranian Journal of Health and Environment, 10(1).
29- Chanra, J., Budianto, E., & Soegijono, B. (2019, April). Surface modification of montmorillonite by the use of organic cations via conventional ion exchange method. In IOP Conference Series: Materials Science and Engineering (Vol. 509, No. 1, p. 012057). IOP Publishing.
30- Vazquez, A., López, M., Kortaberria, G., Martín, L., & Mondragon, I. (2008). Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination. Applied Clay Science, 41(1-2), 24-36.
31- Veiskarami, M., Sarvi, M. N., & Mokhtari, A. R. (2016). Influence of the purity of montmorillonite on its surface modification with an alkyl-ammonium salt. Applied Clay Science, 120, 111-120.
32- Hezarjaribi, A., Nosrati, K. F., Abdollahnezhad, K., & Ghorbani, K. (2013). The prediction possibility of soil cation exchange capacity by using of easily accessible soil parameters. Journal of Water and Soil, 712-719.
33- Chapman, H. D. (1965). Cation‐exchange capacity. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 891-901.
34- Alkaram, U. F., Mukhlis, A. A., & Al-Dujaili, A. H. (2009). The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. Journal of Hazardous Materials, 169(1-3), 324-332.
35- Dos Santos, A., Viante, M. F., Pochapski, D. J., Downs, A. J., & Almeida, C. A. P. (2018). Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modified with a cationic surfactant. Journal of hazardous materials, 355, 136-144.
36- Widjonarko, D. M., Mayasari, O. D., Wahyuningsih, S., & Nugrahaningtyas, K. D. (2018, March). Modification of Montmorillonite with Cetyl Trimethylammonium Bromide and Tetra Ethyl Ortho Silicate. In IOP Conference Series: Materials Science and Engineering (Vol. 333, No. 1, p. 012048). IOP Publishing.
37- Kıranşan, M., Soltani, R. D. C., Hassani, A., Karaca, S., & Khataee, A. (2014). Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye. Journal of the Taiwan Institute of chemical engineers, 45(5), 2565-2577.
38- Karaca, S., Gürses, A., & Ejder Korucu, M. (2013). Investigation of the orientation of CTA+ ions in the interlayer of CTAB pillared montmorillonite. Journal of Chemistry, 2013.
39- Kumar, C. S. (Ed.). (2010). Biomimetic and bioinspired nanomaterials. John Wiley & Sons.
40- Wu, P., Dai, Y., Long, H., Zhu, N., Li, P., Wu, J., & Dang, Z. (2012). Characterization of organo-montmorillonites and comparison for Sr (II) removal: equilibrium and kinetic studies. Chemical Engineering Journal, 191, 288-296.
41- Xi, Y., Ding, Z., He, H., & Frost, R. L. (2004). Structure of organoclays—an X-ray diffraction and thermogravimetric analysis study. Journal of Colloid and Interface Science, 277(1), 116-120.
42- He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., & Frost, R. L. (2005). Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53(3), 287-293.
43- Park, Y., Frost, R. L., Ayoko, G. A., & Morgan, D. L. (2013). Adsorption of p-nitrophenol on organoclays. Journal of thermal analysis and calorimetry, 111(1), 41-47.
44- Ahmat, A. M., Thiebault, T., & Guégan, R. (2019). Phenolic acids interactions with clay minerals: A spotlight on the adsorption mechanisms of Gallic Acid onto montmorillonite. Applied Clay Science, 180, 105188.
45- Xi, Y., Martens, W., He, H., & Frost, R. L. (2005). Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. Journal of Thermal Analysis and Calorimetry, 81(1), 91-97.
46- Muñoz-Shugulí, C., Rodríguez, F. J., Bruna, J. E., Galotto, M. J., Sarantópoulos, C., Perez, M. A. F., & Padula, M. (2019). Cetylpyridinium bromide-modified montmorillonite as filler in low density polyethylene nanocomposite films. Applied Clay Science, 168, 203-210.
47- Abolghasemi Fakhri, L., Ghanbarzadeh, B., Dehghannia, J., & Entezami, A. A. (2012). Effect of Nanoclay (Montmorillonite) on Water Vapour Permeability, Contact Angle and Thermal Properties of Carboxymethyl Cellulose-polyvinyl Alcohol Based Nanocomposite Films. Iranian Journal Food Science and Technology Research, 8(4).
48- Shah, K. J., Mishra, M. K., Shukla, A. D., Imae, T., & Shah, D. O. (2013). Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of colloid and interface science, 407, 493-499.
49- Nasr, E. A. R., Daneshi, S. J., & Farmanesh, K. (2010). Zeta potential effect of the method of sedimentation in nanocomposite coatings produced by pulse electrodeposition process.