مدل‌سازی و تاثیر شوک‌های اقتصادی بر بازده سهام صنایع غذایی

نویسندگان
1 استادیار گروه اقتصاد کشاورزی، دانشگاه سیستان و بلوچستان زاهدان، ایران
2 استاد یار گروه اقتصاد کشاورزی، دانشگاه سیستان و بلوچستان زاهدان، ایران
3 دانشیار گروه اقتصاد منابع، دانشگاه خوارزمی، تهران، ایران.
4 دانشجوی دکترا اقتصاد کشاورزی، دانشگاه سیستان و بلوچستان
5 دانشجوی دکترا اقتصاد کشاورزی، دانشگاه سیستان وبلوچستان(norozianali@pgs.usb.ac.ir)
چکیده
هدف این پژوهش مدل­سازی و تأثیر شوکهای اقتصادی بر بازده سهام صنایع غذایی در طی دوره زمانی1390 تا 1398 است. در این پژوهش به مدل­سازی متغیرهای کلان اقتصادی بهینه بر بازده سهام شرکت‌های غذایی با استفاده از روش تابع تقریب الگوریتم ژنتیک پرداخته شده و سپس با روش خود رگرسیون برداری پانل تکانه‌ها و شوک­های متغیرهای کلان اقتصادی موثر بر بازده سهام صنایع غذایی تجزیه و تحلیل شده است. در ابتدا با روش الگوریتم تقریب تابع ژنتیک، چهار متغیر قیمت نفت اوپک، حجم نقدینگی، قیمت زمین و شاخص قیمت سهام از میان هشت متغیر کلان اقتصادی به عنوان متغیرهای تاثیرگذار در مدل رگرسیون بهینه شناسایی شدند. قیمت نفت اوپک و قیمت زمین تاثیر منفی و معناداری بر بازده سهام شرکت­های غذایی داشته در حالی که حجم نقدینگی و شاخص قیمت سهام تاثیر مثبت و معناداری بر بازده سهام شرکت­های غذایی دارند. با توجه به توابع عکس‌العمل آنی، واکنش بازده سهام نسبت به قیمت نفت اوپک و حجم نقدینگی در ابتدا مثبت بوده است. در روش تجزیه واریانس، بیشترین سهم ناشی از شوک بازده سهام صنایع غذایی به خودش بوده و بعد از آن مربوط به حجم نقدینگی است. با توجه به تاثیر مثبت حجم نقدینگی بر بازده سهام شرکت‌های صنایع غذایی، پیشنهاد می­شود سیاستگذاران و برنامه­ریزان به منظور توسعه سرمایه­گذاری صنایع غذایی، سیاست­های را اعمال کنند تا حجم نقدینگی را به سمت شرکتهایی صنایع غذایی افزایش دهند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling and the impact of economic shocks on food industry stock returns

نویسندگان English

amir dadrasmoghadam 1
Seyed Mahdi Hosseini 2
Mohammad Hossein Karim 3
حسین بدیع فرزین 4
Mohammad Norouzian 5
1 Assistant Professor, University of Sistan and Baluchestan
2 Assistant Professor, University of Sistan and Baluchestan
3 Associate Professor, Department of Resource Economics, Kharazmi University, Tehran, Iran.
4 PhD student in Agricultural Economics, University of Sistan and Baluchestan,
5 PhD student in Agricultural Economics, University of Sistan and Baluchestan, ، norozianali@pgs.usb.ac.ir
چکیده English

The purpose of this study is modeling and the effect of economic shocks on stock returns of food industry during the period 2009 to 2020. In this research, the optimal macroeconomic variables on the stock returns of food companies are modeled using the genetic algorithm approximation function method and then the impulses and shocks of macroeconomic variables affecting the stock returns of food industries are analyzed by Auto regression method has been analyzed. Initially, using the genetic function approximation algorithm, four variables of OPEC oil price, liquidity volume, land price and stock price index were identified among the eight macroeconomic variables as influential variables in the optimal regression model. OPEC oil prices and land prices have a negative and significant effect on the stock returns of food companies, while the volume of liquidity and stock price index have a positive and significant effect on the stock returns of food companies. Given the response impulse functions, the stock return reaction to OPEC oil prices and liquidity was initially positive. In the analysis of variance method, the largest share is due to the shock of the food industry stock returns to itself, followed by the volume of liquidity. Given the positive impact of liquidity on the stock returns of food industry companies, it is suggested that policy makers and planners to implement policies to increase the volume of liquidity to food industry companies in order to develop food industry investment.

کلیدواژه‌ها English

Food industry stock returns
liquidity volume
genetic algorithm approximation function
panel vector auto regression
[1] Abbasinejad, H. Mohammadi, S., and Ebrahimi, S. 2015. Relationship Dynamics of Macro Variables and Stock Market Index, Quarterly Journal of Asset Management and Financing, 5 (1), 61-82. [In Persian]
[2] Akbari, S. M., Dadrasmoghadam, A., and Hezare, A. 2017. Investigation of financial ratios with stock prices of industries related to the agricultural sector in the Iranian Stock Exchange, Journal of Agricultural Economics Research, 9 (1), 165-176. [In Persian]
[3] Aliqholi, M., Hosseini, S. M., 2017. How stock price index fluctuations affect changes in economic growth in Iran (1992-1996), Financial Economics, 11 (41), 201-224. [In Persian]
[4] Ansari, A. M., and Khajavi, H. 2011. Investigating the relationship between earnings smoothing and stock market prices and financial ratios, Journal of Financial Accounting Research, (8), 35-55. [In Persian]
[5] Farshadfar, Z. 2017. Investigating the Relationship between Exchange Rate as One of the Macroeconomic Variables and Additional Stock Returns Using APT Model (Case Study of Exporting Companies Listed on Tehran Stock Exchange), Quarterly Journal of Securities Analysis, 10 (33), 89 -102 [In Persian].
[6] Isa, M. A. M., Nasrul, F., Noh, M. K. A., & Mohamed, S. 2018. A Conceptual Paper on Cointegration and Causality between the Stock Markets and Macroeconomic Variables. Global Business and Management Research: An International Journal, 10(2), 298.‌
[7] Iran Stock Exchange .2017. Office of the General Manager of Tehran Stock Exchange - Information Resources Department [In Persian].
[8] Jareño, F., Escribano, A., & Cuenca, A. (2019). Macroeconomic Variables And Stock Markets: An International Study. Applied Econometrics and International Development, 19(1), 43-54.
[9] Khajeh, A. & Modarress, H. (2010). QSPR prediction of flash point of esters by means of GFA and ANFIS, Journal of Hazardous Materials, 179 ,715–720.
[10] Khaled, K. F. 2011. Modeling corrosion inhibition of iron in acid medium by genetic function approximation method: A QSAR model. Corrosion Science, 53(11), 3457-3465.
[11] Khaled, K. F. & El-Sherik, A. M. 2013. Using molecular dynamics simulations and genetic function approximation to model corrosion Inhibition of iron in chloride solutions. International journal of Electrochemical Science, 8, 10022-10043.
[12] Mohammadi, H., Shabanian, F., and Kaseb, A. 2014. Investigating the effect of macroeconomic variables on the Tobin Q index of food industry affiliated companies (Case study: Sugar industry), Economic Research and Agricultural Development, 28 (4) [In Persian].
[13] Heidari, H., Mohammadzadeh, Y., and Rafah Kahriz, A. 2018. Investigating the effect of exchange rate on stock returns of pharmaceutical industry in Tehran Stock Exchange using Markov switching approach, Quarterly Journal of Asset Management and Financing, 2 (21), 35-56. [In Persian]
[14] Hosseini Kasgari, S. H., Hosseini Yakani, S. A., and Abedi, S. 2017. Optimal portfolio selection of stocks of food industry companies in Tehran Stock Exchange using the combined forecasting method: application of the mean variance skew model, agricultural economics, (11) 4: 81-105. [In Persian]
[15] Mamipoor, S., Fali, A. 2017. Investigating the Overflow of Oil Price Turbulence on the Returns of Selected Industries on the Tehran Stock Exchange: Markov Regime Change Approach and Analysis of variance, Monetary Economics, Finance (Knowledge and Development), 24 (14), 205-236. [In Persian]
[16] Molaei, S., Barzaei, M., Vaez, Samadi, S., and Parvardeh, A., 2017. Analysis of the relationship between the market and the price index of Tehran Stock Exchange: Nonparametric and Coppola approach, Economic Research, 52 (2), 459- 478. [In Persian]
[17] Moradi, A. 2006. Relationship between financial ratios and stock returns in Tehran Stock Exchange, M.Sc. Thesis, Tarbiat Modares University. [In Persian]
[18] Moslehshirazi, A. N., Mousavi H., Hashem, M., and Pashtunizadeh, M. 2015. Simulation of Pattern of Exchange Rate and Gold Price Changes on the Performance of Tehran Stock Exchange with a Systemic Dynamics Approach, Investment Knowledge Quarterly, 7(25), 17-38. [In Persian]
[19] Rahmani, A. 2009. Capital Markets, the Necessity of Improving and Improving the Business Environment, Monetary-Banking Research, 1 (1), 145-171. [In Persian]
[20] Rogers, D. and Hopfinger, A. J. 1994. Application of genetic function approximation to quantitative structure–activity relationships and quantitative structure–property relationships. Journal Chemical Information Computer Science, 34, 854–866.
[21] Rostami, M. R., Kalantari Benjar, M., and Nouri Jafarabad, D. 2015. Investigating the correlation between the returns of various industries in the Tehran Stock Exchange with the returns of oil, gold, dollar and euro markets using wavelet analysis, Investment Knowledge Research Quarterly, (5) 17.
[22] Salehi, M., and Yousefi, S. 2015. The relationship between capital structure and return on assets and the emphasis on inflation created by government decisions. Financial Management Strategy, 4 (12), 47-58 [In Persian].
[23] Samuel, H., Uzairu, A., Mamza1, P., & Oluwole Joshua, O. 2015. Quantitative structure-toxicity relationship study of some polychlorinated aromatic compounds using molecular descriptors. Journal of Computational Methods in Molecular Design, 5 (3),106-119.
[24] Sharma, N. 2016. Causal relation between stock return and exchange rate: Evidence from India. Global Journal of Management and Business Research. 15(11), 26-32.
[25] Toroghi, S. Torabi, T., Ghaffari, F., and Memarnejad, A. 2017. The Impact of Uncertainty of Macroeconomic Indices on the Return of Tehran Stock Exchange with the Approach of Stochastic Fluctuation Models with Time Changes, Investment Knowledge Quarterly, 6 (23), 1-21. [In Persian]
[26] Tseng, L.Y. and Yang, S. 1997. Genetic algorithms for clustering, feature selection and classification, IEEE Int. Conference on Neural Networks, 1612-1616.
[27] Vafaie, H. and De Jong, K. 1993. Robust feature selection algorithms, Proc. of the fifth conference on tools for artificial intelligence, Boston, MA: IEEE Computer Society Press, 356-363.
[28] Varhrami, V. and Abbas Gholi Nejad Esbaqi, R. 2020. Investigating the effect of micro and macro monetary variables on the stock price index of twelve more active companies in the stock market using the dynamic panel data method, Applied Economics, 8 (27), 13-26. [In Persian]
[29] Zarei, B., and Lajevardi, H. 2018. Investigating the relationship between financial development and oil shocks on economic growth instability, Financial Economics, 12 (43), 193-208. [In Persian]