[1] Kester, J.J. and Fenema, O. 1986. Edible films and coating: A review. Food Technology, 40: 47-59.
[2] Guilbert, S. 1986. Technology and application of edibal protective films. In Food packaging and preservation. Elsevier, Applied Science: London, UK, pp. 371-394.
[3] Ghanbarzadeh, B., Almasi, H., Entezami, A.A., (2006). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11, 697–702.
[4] Li, S.H., Jia, N., Ma, M. and Sun, R. 2011. Cellulose-silver nanocomposites: microwave assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydrate Polymers, 86: 441-447.
[5] Vicentini, D.S., Smania, A.J., Laranjeira, M.C.M., (2010). Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Materials Science and Engineering C, 30: 503–508.
[6] Gómez-Estaca J, Bravo L, Gómez-Guillén MC et al (2009). Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chemistry, 112:18–25.
[7] Neus Angles M, Dufresne A (2000). Plasticized starch/tuniein whiskers nanocomposites. 1. Structural analysis. Macromolecules, 33:8344–8353.
[8] Garcia, Y.J, Rodriguez-Malaver, A.J, Penaloza, N (2005). Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. Journal of Neuroscience Methods, 144 (1): 127-135.
[9] Bruna, J.E., Peñaloza, A., Guarda, A., Rodríguez, F. and Galotto, M.J. 2012. Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Applied Clay Science 58: 79-87.