[1] Sabbah, M., Di Pierro, P., Cammarota, M., Dell’Olmo, E., Arciello, A., & Porta, R. (2019). Development and properties of new chitosan-based films plasticized with spermidine and/or glycerol. Food Hydrocolloids, 87, 245-252.
[2] Noshirvani, N., Ghanbarzadeh, B., Rezaei Mokarram, R., & Hashemi, M. (2018). Antimicrobial, Antioxidant and Physical Properties of Chitosan-Carboxymethyl Cellulose-Oleic Acid Based Films Incorporated with Cinnamon Essential Oil. Iranian Journal of Nutrition Sciences & Food Technology, 13(1), 41-52.
[3] Yeganmohammadi Davaji, M., Khanjari, A., Akhondzadeh Basti, A., Bokaie, S., Cheraghi, N., Fayazfar, S., Shoja Gharebagh, S., & Ghadami, F. (2016). Evaluation of the antimicrobial effect of chitosan and whey proteins isolate films containing free and nanoliposomal garlic essential oils against Listeria monocytegenes, E.coli O157:H7 and Staphylococcus aureus. Iranian Journal of Medical Microbiology, 10(5), 45-51.
[4] Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., & Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1), 3-16.
[5] Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology, 147, 174-184.
[6] Arora, A., & Padua, G. W. (2010). Nanocomposites in food packaging. Journal of Food science, 75(1), R43-R49.
[7] De Azeredo, H. M. (2009). Nanocomposites for food packaging applications. Food research international, 42(9), 1240-1253.
[8] Rhim, J.W., Hong, S.I., Park, H.M. and Ng, P.K., 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of agricultural and food chemistry, 54(16), pp.5814-5822.
[9] Rhim et al,2007 Rhim, J.W. and Ng, P.K., 2007. Natural biopolymer-based nanocomposite films for packaging applications. Critical reviews in food science and nutrition, 47(4), pp.411-433.
[10] Alizadeh, V., & Barzegar, H. (2017). Effect of nanoclay particles on the physical and microstructural properties of psyllium seed hydrocolloid based nanocomposite films. Journal of Food Science and Technology, 67(14), 35-44.
[11] Carbone, M., Donia, D. T., Sabbatella, G., & Antiochia, R. (2016). Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University-Science, 28(4), 273-279.
[12] Costa, C. O. N. T. E., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011). Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. International Journal of Food Microbiology, 148(3), 164-167.
[13] Adame, D. and Beall, G.W., 2009. Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science, 42(3), pp.545-552.
[14] Tang, C., Chen, N., Zhang, Q., Wang, K., Fu, Q. and Zhang, X., 2009. Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polymer Degradation and Stability, 94(1), pp.124-131.
[15] Peyro Mousavi, S. F., Heidari Nasab, A., HashemiPour, H., & Rajabalipour, A. A. (2013). The Effect of Nanofilm Coating Containing Ag on the Shelf Life of Mazafati Date. Food Technology & Nutrition, 10(4), 65-72.
[16] Souza, B. W. S., Cerqueira, M. A., Martins, J. T., Casariego, A., Teixeira, J. A., & Vicente, A. A. (2010). Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocolloids, 24(4), 330-335.
[17] Garcia, M. A., Pinotti, A., Martino, M., & Zaritzky, N. (2009). Electrically treated composite FILMS based on chitosan and methylcellulose blends. Food Hydrocolloids, 23(3), 722-728.
[18] Giannakas, A., Grigoriadi, K., Leontiou, A., Barkoula, N. M., & Ladavos, A. (2014). Preparation, characterization, mechanical and barrier properties investigation of chitosan–clay nanocomposites. Carbohydrate polymers, 108, 103-111.
[19] Lee, J.H., Song, N.B., Jo, W.S. and Song, K.B., 2014. Effects of nano‐clay type and content on the physical properties of sesame seed meal protein composite films. International journal of food science & technology, 49(8), pp.1869-1875.
[20] Ghasemlou, M., Khodaiyan, F., Oromiehie, A. and Yarmand, M.S., 2011. Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49(3), pp.378-384.
[21] Han, J.H. and Floros, J.D., 1997. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting, 13(4), pp.287-298.
[22] ASTM (1995). Standard test methods for water vapor transmission of material, E 96-95. Annual book of ASTM, American Society for Testing and Material. Philadelphia, PA.
[23] Ou, S., Wang, Y., Tang, S., Huang, C. & Jackson, M.G. 2005. Role of ferulic acid in preparing edible films from soy protein isolate. Journal of Food Engineering, 70: 205-210.
[24] ASTM, D., 2002. 882. Standard test methods for tensile, properties of thin plastic sheeting.
[25] Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579.
[26] Shahabi Ghahfarrokhi, I., & Babaei Qazvini, A. (2018). Production of Biodegradable Packaging Material Based on Starch-kefiran-ZnO: Physical and Mechanical Characterization. Iranian Biotechnology Engineering, 49(4), 557-565.
[27] Casariego, A. B. W. S., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., & Vicente, A. A. (2009). Chitosan/clay films' properties as affected by biopolymer and clay micro/nanoparticles' concentrations. Food Hydrocolloids, 23(7), 1895-1902.
[28] Nouri Gharansaraie, A. (2016). Preparation of chitosan nanocomposite enriched with montmorillonite/ CuO for food packaging and evaluation its physical and mechanical properties. Master's Thesis, Faculty of Engineering Department of Chemical Engineering, University of Mohaghegh Ardabili, 122 p.
[29] Souza, B. W. S., Cerqueira, M. A., Casariego, A., Lima, A. M. P., Teixeira, J. A., & Vicente, A. A. (2009). Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 23(8), 2110-2115.
[30] Darzi Arbabi, H. (2015). The effect of plasticizers with electrical current on the physical and mechanical properties of Chitosan-gelatin film. Master's Thesis, Faculty of Agricultural Sciences, Sari Agricultural Sciences and Natural Resources University, 109 p.
[31] Dadfar, S. M. M. (2013). Silver Nanoparticle-Loaded CMC, Gelatin and Chitosan Based Nanocomposites and Their Physicochemical and Antimicrobial Properties. Master's Thesis, Faculty of Agriculture, Shiraz University, 183 p.
[32] Rhim, J. W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate polymers, 86(2), 691-699.
[33] Tunç, S., & Duman, O. (2011). Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Science and Technology, 44(2), 465-472.
[34] Abdollahi, M., Rezaei, M., & Ferzi, Gh. A. (2011). Preparation and evaluation of properties of biodegradable chitosan / nanoclay nanocomposites for use in food packaging. Iranian Food Science and Technology Research Journal, 7(1), 71-79.
[35] Zolfi, M., Khodaiyan, F., Mousavi, M., & Hashemi, M. (2014). The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydrate polymers, 109, 118-125.
[36] Oleyaei, S. A., Ghanbarzadeh, B., Moayedi, A. A., & Abbasi, F. (2017). The effects of TiO2 and montmorilloniteNanofillers on structural, thermal and optical properties of starch based Nanobiocomposite films. Iranian Food Science and Technology Research Journal, 12(5), 678-695.
[37] Bruna, J. E., Peñaloza, A., Guarda, A., Rodríguez, F., & Galotto, M. J. (2012). Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Applied clay science, 58, 79-87.
[38] Salarnia, M., Ganjlou, A., Emam jome, Z., & Bi makr, M. (2018). Physical, barrier and antimicrobial properties of edible film based on sodium caseinate containing cannabis oil. Quarterly Journal of Modern Food Technology, 5(3), 485-497.
[39] De Moura, M. R., Mattoso, L. H., & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 109(3), 520-524.
[40] Rostami Abolvardi, F. Niakosari, M., Dadfar, SMM. (2015). Production of polyvinyl alcohol-hydroxy propyl methylcellulose composites containing silver nanoparticles and investigating its physicochemical and antimicrobial properties. Specialty of Food Science and Technology, 13(1), 229-241.
[41] Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering: C, 30(6), 891-897.
[42] Tahmasbi, M., Beigmohammadi, F., & Rafiei, F. (2017). Production of edible film based on starch-montmorillonite containing green tea extract in order packaging of flax seed oil. Journal of Food Industry Research, 28(3), 69-84.