بررسی اثر جریان الکتریکی بر ویژگی‌های مکانیکی و نفوذپذیری فیلم کیتوزان حاوی نانوذرات رس و نقره

نویسندگان
1 دانشجوی کارشناسی ارشد علوم و صنایع غذایی دانشگاه علوم کشاورزی و منابع طبیعی ساری.
2 دانشیار گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
چکیده
فیلم­های برپایه کیتوزان خالص دارای معایب متعددی ازجمله ویژگی­های مکانیکی ضعیف و بازدارندگی کم در برابر رطوبت هستند که موجب محدودیت استفاده از آنها در بسته­بندی­های مواد غذایی می­شود. در این پژوهش، به­منظور بهبود ویژگی­های این فیلم از نانوپرکننده­هایی نظیر نانورس (M) و نانونقره (Ag) و همچنین اعمال جریان الکتریکی در طی خشک شدن فیلم­ها بهره گرفته شد. فیلم­های نانوکامپوزیتی برپایه کیتوزان، با افزودن چهار سطح 0، 1، 3 و 5% نانونقره و نانورس تهیه و به­منظور خشک کردن فیلم­ها از حرارت و جریان الکتریکی در چهار ولتاژ 0، 15، 30 و 60 به­طور هم­زمان استفاده شد و خصوصیات آنها از جمله نفوذپذیری به بخار آب و اکسیژن، خواص فیزیکی و مکانیکی و ریزساختار مورد بررسی قرار گرفت. حضور نانوذرات سبب افزایش رطوبت، ضخامت و کدورت و بهبود WVP و O2P فیلم­های نانوکامپوزیت و همچنین خواص مکانیکی در مقایسه با فیلم کیتوزان خالص گردید. از طرفی غلظت 3% در هر دو تیمار، توانست ویژگی­های نفوذپذیری و خواص مکانیکی را نسبت به سطوح 1 و 5% بهبود بخشد. اعمال جریان الکتریکی تاثیر معنی­داری بر درصد رطوبت، حلالیت و میزان ضخامت نداشت. در مقابل، استفاده از جریان­های الکتریکی با ولتاژ 30، سبب بهبود خواص مکانیکی، کدورت و WVP و ولتاژ 60، موجب بهبود O2P در نانوکامپوزیت­ها شد. تصاویر حاصل از SEM نشان داد، فیلم کیتوزان خالص دارای سطحی زبر و شکاف­های متعدد و سطح فیلم حاوی نانورس، نسبتا صاف و فشرده بود که امکان افزایش مقاومت کششی و خواص ممانعت کنندگی را فراهم می­کند. فیلم حاوی نانونقره نیز به­دلیل داشتن ساختاری پر پیچ و خم و دارای شکاف، میزان کدورت و خواص مکانیکی بیشتر و خواص ممانعت کنندگی کمتر از نانورس را دارا بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation the effect of electricity flow on mechanical and permeability properties of chitosan film containing clay and silver nanoparticles

نویسندگان English

niloufar safarisani 1
Ali Motamedzadegan 2
Jamshid Farmani 2
Jafar Milani 2
1 M. Sc. Student, Department of Food Science & Technology, Sari Agricultural Sciences & Natural Resources University.
2 Associate Professor, Department of Food Science & Technology, Sari Agricultural Sciences & Natural Resources University.
چکیده English

Chitosan based films have several disadvantages, such as poor mechanical properties and low moisture deterioration, which limits their use in food packaging. In this study, nanomaterials such as nanoclay (M) and nanosilver (Ag) were used to improve the properties of the film whilst applying electrical current during film drying. Nanocomposite films based on chitosan, were prepared by adding four levels 0, 1, 3 and 5% silver and clay, then heat and electricity with 0, 15, 30 and 60 Voltage were simultaneously applied to dry them, finally their characteristics like including WVP, O2P, physical and mechanical properties, and microstructure were studied. The presence of nanoparticles in nanocomposite films increased the moisture, thickness, opacity, WVP, O2P and improved mechanical properties, incomparison with pure chitosan film. On the other hand, the concentration of 3% in both treatments improve the permeability and mechanical properties of the 1 and 5% levels. The application of electrical current had no significant effect on moisture content, solubility and thickness. In contrast, the use of electric current with a voltage of 30, improved mechanical properties, turbidity and WVP and a voltage of 60, improved O2P in nanocomposites. The images produced by the SEM show that the pure chitosan film has a rough surface and multiple gaps and the film surface of the nanoclay is relatively smooth and compact, which allows for increased tensile strength and inhibitory properties. The film containing nanosilver also had a more turbulent structure with a gap, turbidity and mechanical properties, and less inhibitory properties than nanoclay.

کلیدواژه‌ها English

Nanocomposite
Chitosan
Nanoclay
Nanosilver
electric current
[1] Sabbah, M., Di Pierro, P., Cammarota, M., Dell’Olmo, E., Arciello, A., & Porta, R. (2019). Development and properties of new chitosan-based films plasticized with spermidine and/or glycerol. Food Hydrocolloids, 87, 245-252.
[2] Noshirvani, N., Ghanbarzadeh, B., Rezaei Mokarram, R., & Hashemi, M. (2018). Antimicrobial, Antioxidant and Physical Properties of Chitosan-Carboxymethyl Cellulose-Oleic Acid Based Films Incorporated with Cinnamon Essential Oil. Iranian Journal of Nutrition Sciences & Food Technology, 13(1), 41-52.
[3] Yeganmohammadi Davaji, M., Khanjari, A., Akhondzadeh Basti, A., Bokaie, S., Cheraghi, N., Fayazfar, S., Shoja Gharebagh, S., & Ghadami, F. (2016). Evaluation of the antimicrobial effect of chitosan and whey proteins isolate films containing free and nanoliposomal garlic essential oils against Listeria monocytegenes, E.coli O157:H7 and Staphylococcus aureus. Iranian Journal of Medical Microbiology, 10(5), 45-51.
[4] Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., & Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1), 3-16.
[5] Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology, 147, 174-184.
[6] Arora, A., & Padua, G. W. (2010). Nanocomposites in food packaging. Journal of Food science, 75(1), R43-R49.
[7] De Azeredo, H. M. (2009). Nanocomposites for food packaging applications. Food research international, 42(9), 1240-1253.
[8] Rhim, J.W., Hong, S.I., Park, H.M. and Ng, P.K., 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of agricultural and food chemistry, 54(16), pp.5814-5822.
[9] Rhim et al,2007 Rhim, J.W. and Ng, P.K., 2007. Natural biopolymer-based nanocomposite films for packaging applications. Critical reviews in food science and nutrition, 47(4), pp.411-433.
[10] Alizadeh, V., & Barzegar, H. (2017). Effect of nanoclay particles on the physical and microstructural properties of psyllium seed hydrocolloid based nanocomposite films. Journal of Food Science and Technology, 67(14), 35-44.
[11] Carbone, M., Donia, D. T., Sabbatella, G., & Antiochia, R. (2016). Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University-Science, 28(4), 273-279.
[12] Costa, C. O. N. T. E., Conte, A., Buonocore, G. G., & Del Nobile, M. A. (2011). Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. International Journal of Food Microbiology, 148(3), 164-167.
[13] Adame, D. and Beall, G.W., 2009. Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science, 42(3), pp.545-552.
[14] Tang, C., Chen, N., Zhang, Q., Wang, K., Fu, Q. and Zhang, X., 2009. Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polymer Degradation and Stability, 94(1), pp.124-131.
[15] Peyro Mousavi, S. F., Heidari Nasab, A., HashemiPour, H., & Rajabalipour, A. A. (2013). The Effect of Nanofilm Coating Containing Ag on the Shelf Life of Mazafati Date. Food Technology & Nutrition, 10(4), 65-72.
[16] Souza, B. W. S., Cerqueira, M. A., Martins, J. T., Casariego, A., Teixeira, J. A., & Vicente, A. A. (2010). Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocolloids, 24(4), 330-335.
[17] Garcia, M. A., Pinotti, A., Martino, M., & Zaritzky, N. (2009). Electrically treated composite FILMS based on chitosan and methylcellulose blends. Food Hydrocolloids, 23(3), 722-728.
[18] Giannakas, A., Grigoriadi, K., Leontiou, A., Barkoula, N. M., & Ladavos, A. (2014). Preparation, characterization, mechanical and barrier properties investigation of chitosan–clay nanocomposites. Carbohydrate polymers, 108, 103-111.
[19] Lee, J.H., Song, N.B., Jo, W.S. and Song, K.B., 2014. Effects of nano‐clay type and content on the physical properties of sesame seed meal protein composite films. International journal of food science & technology, 49(8), pp.1869-1875.
[20] Ghasemlou, M., Khodaiyan, F., Oromiehie, A. and Yarmand, M.S., 2011. Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49(3), pp.378-384.
[21] Han, J.H. and Floros, J.D., 1997. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting, 13(4), pp.287-298.
[22] ASTM (1995). Standard test methods for water vapor transmission of material, E 96-95. Annual book of ASTM, American Society for Testing and Material. Philadelphia, PA.
[23] Ou, S., Wang, Y., Tang, S., Huang, C. & Jackson, M.G. 2005. Role of ferulic acid in preparing edible films from soy protein isolate. Journal of Food Engineering, 70: 205-210.
[24] ASTM, D., 2002. 882. Standard test methods for tensile, properties of thin plastic sheeting.
[25] Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579.
[26] Shahabi Ghahfarrokhi, I., & Babaei Qazvini, A. (2018). Production of Biodegradable Packaging Material Based on Starch-kefiran-ZnO: Physical and Mechanical Characterization. Iranian Biotechnology Engineering, 49(4), 557-565.
[27] Casariego, A. B. W. S., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., & Vicente, A. A. (2009). Chitosan/clay films' properties as affected by biopolymer and clay micro/nanoparticles' concentrations. Food Hydrocolloids, 23(7), 1895-1902.
[28] Nouri Gharansaraie, A. (2016). Preparation of chitosan nanocomposite enriched with montmorillonite/ CuO for food packaging and evaluation its physical and mechanical properties. Master's Thesis, Faculty of Engineering Department of Chemical Engineering, University of Mohaghegh Ardabili, 122 p.
[29] Souza, B. W. S., Cerqueira, M. A., Casariego, A., Lima, A. M. P., Teixeira, J. A., & Vicente, A. A. (2009). Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 23(8), 2110-2115.
[30] Darzi Arbabi, H. (2015). The effect of plasticizers with electrical current on the physical and mechanical properties of Chitosan-gelatin film. Master's Thesis, Faculty of Agricultural Sciences, Sari Agricultural Sciences and Natural Resources University, 109 p.
[31] Dadfar, S. M. M. (2013). Silver Nanoparticle-Loaded CMC, Gelatin and Chitosan Based Nanocomposites and Their Physicochemical and Antimicrobial Properties. Master's Thesis, Faculty of Agriculture, Shiraz University, 183 p.
[32] Rhim, J. W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate polymers, 86(2), 691-699.
[33] Tunç, S., & Duman, O. (2011). Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT-Food Science and Technology, 44(2), 465-472.
[34] Abdollahi, M., Rezaei, M., & Ferzi, Gh. A. (2011). Preparation and evaluation of properties of biodegradable chitosan / nanoclay nanocomposites for use in food packaging. Iranian Food Science and Technology Research Journal, 7(1), 71-79.
[35] Zolfi, M., Khodaiyan, F., Mousavi, M., & Hashemi, M. (2014). The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydrate polymers, 109, 118-125.
[36] Oleyaei, S. A., Ghanbarzadeh, B., Moayedi, A. A., & Abbasi, F. (2017). The effects of TiO2 and montmorilloniteNanofillers on structural, thermal and optical properties of starch based Nanobiocomposite films. Iranian Food Science and Technology Research Journal, 12(5), 678-695.
[37] Bruna, J. E., Peñaloza, A., Guarda, A., Rodríguez, F., & Galotto, M. J. (2012). Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Applied clay science, 58, 79-87.
[38] Salarnia, M., Ganjlou, A., Emam jome, Z., & Bi makr, M. (2018). Physical, barrier and antimicrobial properties of edible film based on sodium caseinate containing cannabis oil. Quarterly Journal of Modern Food Technology, 5(3), 485-497.
[39] De Moura, M. R., Mattoso, L. H., & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 109(3), 520-524.
[40] Rostami Abolvardi, F. Niakosari, M., Dadfar, SMM. (2015). Production of polyvinyl alcohol-hydroxy propyl methylcellulose composites containing silver nanoparticles and investigating its physicochemical and antimicrobial properties. Specialty of Food Science and Technology, 13(1), 229-241.
[41] Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering: C, 30(6), 891-897.
[42] Tahmasbi, M., Beigmohammadi, F., & Rafiei, F. (2017). Production of edible film based on starch-montmorillonite containing green tea extract in order packaging of flax seed oil. Journal of Food Industry Research, 28(3), 69-84.