Risk Assessment of Isolated Lactobacill from Traditional Iranian Dairy Products

Authors
1 Ph.D student, Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
2 Professor, Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
3 Assistant Professor, Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
4 Assistant Professor, Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
Abstract
The application of probiotic starter cultures in fermented products is expanding in different communities. The genetic variation makes the effects of these bacteria different and unpredictable in different human societies. Therefore, the safety control and evaluation of their non-pathogenicity is of great importance and monitoring centers are required to closely monitor the safety of the bacteria used in food products.

In this study, two strains of Lactobacillus isolated from dairy products of Ardabil (Heyran mountain road villages) and Khuzestan province (Behbahan city) in Iran were identified based on the biochemical and molecular properties through sequence analysis of 16S rRNA gene. Then, their safety was examined based on the international guidelines, especially the European :union: standard. The two identified strains included Lactobacillus fermentum (PTCC 1929) and Lactobacillus helveticus (PTCC 1930). The results showed the lack of gelatinase enzyme, inability of blood hemolysis, inability of amino acids decarboxylation and the lack of genes responsible for the invasive characteristics of pathogenic microorganisms including gelE, efaAfm , efaAfs , agg, ace, cylM, cylA, cylB. In addition, the results showed the sensitivity of both isolates to Penicillin, Ampicillin, Rifampicin and Tetracycline, and their resistance to Kanamycin and Ciprofloxacin. Lactobacillus fermentum was resistant to vancomycin, whereas Lactobacillus helveticus was susceptible to it. Since cases of antibiotic resistance are inherent according to scientific reports, the obtained results confirmed the potential application of these two isolated strains as starter in the fermented dairy products. It also confirmed the necessity of using safety assessment procedures for probiotic bacteria.
Keywords

Subjects


1. Wong, A., Ngu, D. Y. S., Dan, L. A., Ooi, A., Lim, R. L. H. 2015. Detection of antibiotic resistance in probiotics of dietary supplements. Nutrition Journal. 14(1): 95.
2. Zheng, M., Zhang, R., Tian, X., Zhou, X., Pan, X., Wong, A. 2017. Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. Frontiers in microbiology. 8: 908.
3. Tejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G. R., Rowland, I. 2012. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe. 18(5): 530-8.
4. Bhardwaj, A., Gupta, H., Kapila, S., Kaur, G., Vij, S., Malik, R. K. 2010. Safety assessment and evaluation of probiotic potential of bacteriocinogenic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions. International journal of food microbiology. 141(3): 156-64.
5. Motahari, P., Mirdamadi, S., Kianirad, M. 2017. Safety evaluation and antimicrobial properties of Lactobacillus pentosus 22C isolated from traditional yogurt. Journal of Food Measurement and Characterization. 11(3): 972-8.
6. Szkaradkiewicz, A. K. 2013. Probiotics and prebiotics. Journal of Biology and Earth Sciences. 3(1): 42-7.
7. Soleymanzadeh, N., Mirdamadi, S., Kianirad, M. 2017. Incidence of virulence determinants and antibiotic resistance in lactic acid bacteria isolated from Iranian traditional fermented camel milk (Chal). Journal of Food Biosciences and Technology. 7(2): 1-8.
8. Doron, S., Snydman, D. R. 2015. Risk and safety of probiotics. Clinical Infectious Diseases. 60(suppl_2): S129-S34.
9. Gueimonde, M., Ouwehand, A. C., Salminen, S. 2004. Safety of probiotics. Scandinavian Journal of Nutrition. 48(1): 42-8.
10. Sanders, M. E., Akkermans, L. M., Haller, D., Hammerman, C., Heimbach, J. T., Hörmannsperger, G., et al. 2010. Safety assessment of probiotics for human use. Gut microbes. 1(3): 164-85.
11. Besselink, M. G., van Santvoort, H. C., Buskens, E., Boermeester, M. A., van Goor, H., Timmerman, H. M., et al. 2008. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. The Lancet. 371(9613): 651-9.
12. Salminen, M. K., Tynkkynen, S., Rautelin, H., Saxelin, M., Vaara, M., Ruutu, P., et al. 2002. Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clinical Infectious Diseases. 35(10): 1155-60.
13. Kothari, D., Patel, S., Kim, S.-K. 2019. Probiotic supplements might not be universally-effective and safe: A review. Biomedicine & Pharmacotherapy. 111: 537-47.
14. Hummel, A. S., Hertel, C., Holzapfel, W. H., Franz, C. M. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol. 73(3): 730-9.
15. باقری, م. ص. م. م. س. م. د. ف. 1398. ولید شیر تخمیری فراسودمند توسط لاکتوباسیل های جدا شده از محصولات لبنی سنتی ایران. فن آوری های نوین غذائی.
16. Kandler O, N, W. 1986. Bergey's manual of systematic bacteriology. In: Sneath PHA, Mair NS, Sharpe, ME, Holt JG (eds)Williams and Wilkins, USA.
17. Kim, O.-S., Cho, Y.-J., Lee, K., Yoon, S.-H., Kim, M., Na, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International journal of systematic and evolutionary microbiology. 62(3): 716-21.
18. Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., et al. 2013. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic acids research. 42(D1): D633-D42.
19. Eaton, T. J., Gasson, M. J. 2001. Molecular screening of Enterococcusvirulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol. 67(4): 1628-35.
20. Carasi, P., Díaz, M., Racedo, S. M., De Antoni, G., Urdaci, M. C., Serradell, M. d. l. Á. 2014. Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri. BioMed research international. 2014.
21. Sharma, P., Tomar, S. K., Sangwan, V., Goswami, P., Singh, R. 2016. Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. Journal of Food Safety. 36(1): 38-51.
22. Eaton, T. J., Gasson, M. J. 2001. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Applied and Environmental Microbiolgy. 67(4): 1628-35.
23. Balamurugan, R., Chandragunasekaran, A. S., Chellappan, G., Rajaram, K., Ramamoorthi, G., Ramakrishna, B. S. 2014. Probiotic potential of lactic acid bacteria present in home made curd in southern India. The Indian journal of medical research. 140(3): 345.
24. Zheng, W., Zhang, Y., Lu, H.-M., Li, D.-T., Zhang, Z.-L., Tang, Z.-X., et al. 2015. Antimicrobial activity and safety evaluation of Enterococcus faecium KQ 2.6 isolated from peacock feces. BMC biotechnology. 15(1): 30.
25. Adimpong, D. B., Nielsen, D. S., Sørensen, K. I., Derkx, P. M., Jespersen, L. 2012. Genotypic characterization and safety assessment of lactic acid bacteria from indigenous African fermented food products. BMC microbiology. 12(1): 75.
26. Owusu-Kwarteng, J., Tano-Debrah, K., Akabanda, F., Jespersen, L. 2015. Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough. BMC microbiology. 15(1): 261.
27. Semedo, T., Almeida Santos, M., Martins, P., Silva Lopes, M. F., Figueiredo Marques, J. J., Tenreiro, R., et al. 2003. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol. 41(6): 2569-76.
28. Vankerckhoven, V., Van Autgaerden, T., Vael, C., Lammens, C., Chapelle, S., Rossi, R., et al. 2004. Development of a Multiplex PCR for the Detection of asa1, gelE, cylA, esp, and hyl Genes in Enterococci and Survey for Virulence Determinants among European Hospital Isolates of Enterococcus faecium. Journal of Clinical Microbiology. 42(10): 4473-9.
29. Pooja Thakkar, H. A. M., J.B.Prajapati. 2015. Isolation, characterization and safety assessment of lactic acid bacterial
isolates from fermented food products. International journal iof current microbiology and applied sciences. 4(4): 713-25.
30. Mannu, L., Paba, A., Daga, E., Comunian, R., Zanetti, S., Duprè, I., et al. 2003. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. International journal of food microbiology. 88(2-3): 291-304.
31. Sieladie, D. V., Zambou, N. F., Kaktcham, P. M., Cresci, A., Fonteh, F. 2011. Probiotic properties of lactobacilli strains isolated from raw cow milk in the western highlands of Cameroon. Innovative Romanian Food Biotechnology. (9).
32. Gómez, N. C., Ramiro, J. M., Quecan, B. X., de Melo Franco, B. D. 2016. Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Frontiers in microbiology. 7: 863.
33. Burdychova, R., Komprda, T. 2007. Biogenic amine-forming microbial communities in cheese. FEMS Microbiology Letters. 276(2): 149-55.
34. Pradhan, D., Singh, R., Tyagi, A., Rashmi, H., Batish, V., Grover, S. 2019. Assessing safety of Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 using in vitro approaches and an in vivo murine model. Regulatory Toxicology and Pharmacology. 101: 1-11.
35. Togay, S. O., Keskin, A. C., Acik, L., Temiz, A. 2010. Virulence genes, antibiotic resistance and plasmid profiles of Enterococcus faecalis and Enterococcus faecium from naturally fermented Turkish foods. J Appl Microbiol. 109(3): 1084-92.
36. Sillanpaa, J., Martinez, B., Antikainen, J., Toba, T., Kalkkinen, N., Tankka, S., et al. 2000. Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J Bacteriol. 182(22): 6440-50.
37. Joghataei, M., Yavarmanesh, M., Dovom, M. R. E. 2017. Safety Evaluation and Antibacterial Activity of Enterococci Isolated from Lighvan Cheese. Journal of Food Safety. 37(1): e12289-n/a.
38. Goktepe, I., Juneja, V. K., Ahmedna, M. 2005. Probiotics in food safety and human health: CRC Press.
39. Miljkovic, M., Strahinic, I., Tolinacki, M., Zivkovic, M., Kojic, S., Golic, N., et al. 2015. AggLb is the largest cell-aggregation factor from Lactobacillus paracasei subsp. paracasei BGNJ1-64, functions in collagen adhesion, and pathogen exclusion in vitro. PLoS One. 10(5): e0126387.
40. Fisher, K., Phillips, C. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiology. 155(6): 1749-57.
41. Cisneros, Y. M. A., Ponce-Alquicira, E. 2018. Antibiotic Resistance in Lactic Acid Bacteria.
42. Abriouel, H., Muñoz, M. d. C. C., Lerma, L. L., Montoro, B. P., Bockelmann, W., Pichner, R., et al. 2015. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Research International. 78: 465-81.
43. Zhou, J., Pillidge, C., Gopal, P., Gill, H. 2005. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. International journal of food microbiology. 98(2): 211-7.
44. Ammor, M. S., Flórez, A. B., Mayo, B. 2007. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food microbiology. 24(6): 559-70.
45. Pisano, M. B., Viale, S., Conti, S., Fadda, M. E., Deplano, M., Melis, M. P., et al. 2014. Preliminary evaluation of probiotic properties of Lactobacillus strains isolated from Sardinian dairy products. BioMed research international. 2014.
46. Gueimonde, M., Sánchez, B., de los Reyes-Gavilán, C. G., Margolles, A. 2013. Antibiotic resistance in probiotic bacteria. Frontiers in microbiology. 4: 202.