کاربرد اسانس روغنی آرتیمیسیا افسنطین در کنترل رشد باکتری های بیماری زا روی کاهوی تازه

نویسندگان
1 استادیار، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران
2 کارشناس آزمایشگاه، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران
چکیده
امروزه به دلیل اثرات جانبی نگهدارنده­های شیمیایی، مصرف نگهدارنده­های طبیعی نظیر اسانس­های روغنی پیشنهاد می­شود. سال­های زیادی است که فعالیت ضدمیکروبی اسانس­های روغنی به خوبی شناخته شده است. در این مطالعه، بعد از تهیه اسانس روغنی آرتیمیسیا افسنطین، ترکیبات آن توسط کروماتوگرافی گازی-طیف سنج جرمی GC-MS)) شناسایی شد. سپس فعالیت ضدمیکروبی اسانس روغنی علیه استافیلوکوکوس اورئوس، اشرشیاکلی، سالمونلا تایفی و باسیلوس سرئوس توسط روش­های انتشار دیسک در آگار، MIC و MBC ارزیابی گردید. براساس نتایج MIC، غلظت­های اسانس روغنی (µl/ml) 16، 32 و 64 جهت ارزیابی کارایی آن در غیرفعال سازی رشد باکتری­های­ بیماریزا روی کاهوی تازه انتخاب گردید. کاهو با استافیلوکوکوس اورئوس، اشرشیاکلی، سالمونلا تایفی و باسیلوس سرئوس تلقیح گردید و تعداد باکتری­ها در فواصل زمانی (0، 3، 24 و 72 ساعت) شمارش گردید. غلظت زد- بتا- اوسیمن اکساید به عنوان ترکیب اصلی اسانس روغنی 2.36± 76.53 % بود. نتایج مقادیر MIC، MBC و انتشار دیسک در آگار نشان داد که حساس­ترین و مقاوم­ترین باکتری­ها به ترتیب استافیلوکوکوس اورئوس و اشرشیاکلی می­باشند. در مقایسه با کنترل (آب)، کاهوی تیمار شده با اسانس روغنی µl/ml 64 بعد از 72 ساعت تیمار نشان داد که باعث کاهش 3.36، 2.27، 3.23 و 3.47 لگاریتمی به ترتیب در تعداد استافیلوکوکوس اورئوس، اشرشیاکلی، سالمونلا تایفی و باسیلوس سرئوس در هر گرم کاهو می­شود. این تحقیق نشان داد که اسانس روغنی آرتیمیسیا افسنطین می­تواند یک عامل ضدمیکروبی موثر جهت کنترل رشد باکتری­های پاتوژنیک روی کاهوی تازه باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of Artemisia absinthium essential oil to the control of pathogenic bacteria growth on fresh lettuce

نویسندگان English

nafiseh davati 1
Somaye Ali Mirzaei 2
1 Assistant professor, Department of Food Science and Technology, Bu-Ali Sina University. Hamedan, Iran
2 Laboratory technician, Department of Food Science and Technology, Bu-Ali Sina University. Hamedan, Iran
چکیده English

Today, because of the side effects of chemical preservatives, it is suggested to use natural antimicrobial compounds such as essential oils. The antimicrobial activities of essential oils are well recognized for many years. In this study, after preparation of Artemisia absinthium essential oil, its components were identified by Gas chromatography–mass spectrometry (GC-MS). Then antibacterial activity of the essential oil was evaluated against Staphylococcus aureus, Escherichia coli, Salmonella typhi and Bacillus cereus by agar disk-diffusion, MIC and MBC methods. Based on MIC results, essential oil concentrations of 16, 32 and 64 (µl/ml) were selected to evaluate its efficacy in inactivating the growth of pathogenic bacteria on fresh lettuce. Lettuce was inoculated with Staphylococcus aureus, Escherichia coli, Salmonella typhi and Bacillus cereus and the bacterial count were enumerated at time intervals (0 h, 3 h, 24 h, and 72 h). The concentration of (Z)-β-Ocimene oxide as the major component of the essential oil was 76.53±2.36%. The results of MIC, MBC values and agar disk-diffusion showed that the most sensitive and the most resistant bacteria were Staphylococcus aureus and Escherichia, respectively. Compared to control (water), lettuce treated with 64 µl/ml essential oil at 72 h after treatment showed an up to 3.36, 2.27, 3.23 and 3.47 log CFU/g reductions in Staphylococcus aureus, Escherichia coli, Salmonella typhi and Bacillus cereus, respectively. This research showed that Artemisia absinthium essential oil may be an effective antimicrobial agent to the Control of pathogenic bacteria growth on fresh lettuce.

کلیدواژه‌ها English

Antimicrobial- Artemisia absinthium- Lettuce
Abadias, M., Usall, J., Anguera, M., Solsona, C. and Viñas, I., 2008. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. International journal of food microbiology, 123(1-2), pp.121-129.
Aguilar‐Uscanga, B. and Francois, J.M., 2003. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in applied microbiology, 37(3), pp.268-274.
Allende, A., McEvoy, J., Tao, Y. and Luo, Y., 2009. Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite, and citric acid on Escherichia coli O157: H7 and natural microflora of fresh-cut cilantro. Food Control, 20(3), pp.230-234.
Anand, S.P. and Sati, N., 2013. Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. International journal of pharmaceutical sciences and research, 4(7), p.2496.
Bagamboula, C.F., Uyttendaele, M. and Debevere, J., 2004. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food microbiology, 21(1), pp.33-42.
Beuchat, L.R., 1992. Surface disinfection of raw produce. Dairy, Food and Environmental Sanitation, 12(1), pp.6-9.
Beuchat, L.R., 1996. Pathogenic microorganisms associated with fresh produce. Journal of food protection, 59(2), pp.204-216.
Bhargava, K., Conti, D.S., da Rocha, S.R. and Zhang, Y., 2015. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food microbiology, 47, pp.69-73.
Food and Drug Administration, 2006. The FDA: Fresh Leafy Greens Grown in the United States Are Safe. FDA Consum, 40(11).
Gündüz, G.T., Gönül, Ş.A. and Karapınar, M., 2010. Efficacy of oregano oil in the inactivation of Salmonella typhimurium on lettuce. Food Control, 21(4), pp.513-517.
Carson, C.F., Mee, B.J. and Riley, T.V., 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial agents and chemotherapy, 46(6), pp.1914-1920.
Ceylan, E. and Fung, D.Y., 2004. Antimicrobial activity of spices 1. Journal of Rapid Methods & Automation in Microbiology, 12(1), pp.1-55.
Da Silva, J.P.L. and FRANCO, B.D.M., 2012. Application of oregano essential oil against Salmonella enteritidis in mayonnaise salad. Embrapa Agroindústria de Alimentos-Artigo em periódico indexado (ALICE).
Dorman, H.J.D. and Deans, S.G., 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of applied microbiology, 88(2), pp.308-316.
Firuzi, O., Asadollahi, M., Gholami, M. and Javidnia, K., 2010. Composition and biological activities of essential oils from four Heracleum species. Food Chemistry, 122(1), pp.117-122.
Friday, K.B., Beyond Aroma: Terpenes in Cannabis.
Geciova, J., Bury, D. and Jelen, P., 2002. Methods for disruption of microbial cells for potential use in the dairy industry—a review. International Dairy Journal, 12(6), pp.541-553.
Gilles, M., Zhao, J., An, M. and Agboola, S., 2010. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chemistry, 119(2), pp.731-737.
Hyldgaard, M., Mygind, T. and Meyer, R.L., 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in microbiology, 3, p.12.
Ivanova, E., Atanasova-Pancevska, N. and Kungulovski, D., 2013. Antimicrobial activities of laboratory produced essential oil solutions against five selected fungal strains. Matica Srpska Journal for Natural Sciences, (124), pp.171-183.
Koutsoudaki, C., Krsek, M. and Rodger, A., 2005. Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia. Journal of agricultural and food chemistry, 53(20), pp.7681-7685.
Lambert, R.J.W., Skandamis, P.N., Coote, P.J. and Nychas, G.J., 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of applied microbiology, 91(3), pp.453-462.
Leduc, M., Fréhel, C., Siegel, E. and Van Heijenoort, J., 1989. Multilayered distribution of peptidoglycan in the periplasmic space of Escherichia coli. Microbiology, 135(5), pp.1243-1254.
Liu, C., Ruan, Y. and Guan, C., 2004. The model of defense gene expression induced by signaling molecule β-ocimene. Chinese Science Bulletin, 49(24), pp.2643-2644.
Lv, F., Liang, H., Yuan, Q. and Li, C., 2011. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, 44(9), pp.3057-3064.
Morato, J., Mir, J. and Codony, F., 2003. Microbial response to disinfectants in Handbook of Water and Wastewater Microbiology (Mara D, Horan N, eds.).
Moreira, M.R., Ponce, A.G., Del Valle, C.E. and Roura, S.I., 2005. Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Science and Technology, 38(5), pp.565-570.
Moslemi, H.R., Hoseinzadeh, H., Badouei, M.A., Kafshdouzan, K. and Fard, R.M.N., 2012. Antimicrobial activity of Artemisia absinthium against surgical wounds infected by Staphylococcus aureus in a rat model. Indian journal of microbiology, 52(4), pp.601-604.
National Committee for Clinical Laboratory Standards (US), 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. National Committee for Clinical Laboratory Standards.
Nguyen‐the, C. and Carlin, F., 1994. The microbiology of minimally processed fresh fruits and vegetables. Critical Reviews in Food Science & Nutrition, 34(4), pp.371-401.
Panizzi, L., Flamini, G., Cioni, P.L. and Morelli, I., 1993. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. Journal of ethnopharmacology, 39(3), pp.167-170.
Pisabarro, A.G., de Pedro, M.A. and Vázquez, D.A.V.I.D., 1985. Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. Journal of bacteriology, 161(1), pp.238-242.
Rao, A., Zhang, Y., Muend, S. and Rao, R., 2010. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrobial agents and chemotherapy, 54(12), pp.5062-5069.
Rashid, S., Rather, M.A., Shah, W.A. and Bhat, B.A., 2013. Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food chemistry, 138(1), pp.693-700.
Ravichandran, M., Hettiarachchy, N.S., Ganesh, V., Ricke, S.C. and Singh, S., 2011. Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157: H7 and Salmonella Typhimurium in broth and chicken meat system. Journal of Food Safety, 31(4), pp.462-471.
Rota, C., Carraminana, J.J., Burillo, J. and Herrera, A., 2004. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. Journal of food protection, 67(6), pp.1252-1256.
Sikkema, J., de Bont, J.A. and Poolman, B., 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Mol. Biol. Rev., 59(2), pp.201-222.
Tan, R.X., Zheng, W.F. and Tang, H.Q., 1998. Biologically active substances from the genus Artemisia. Planta medica, 64(04), pp.295-302.
WHO, 2017.Food safety. https://www.who.int/news-room/fact-sheets/detail/food-safety
Yossa, N., Patel, J., Millner, P., Ravishankar, S. and Lo, Y.M., 2013. Antimicrobial activity of plant essential oils against Escherichia coli O157: H7 and Salmonella on lettuce. Foodborne pathogens and disease, 10(1), pp.87-96.