[1] Mortazaienezhad, F.; Sadeghian, M.M. Investigation of Compounds from Galbanum (Ferula Gummosa) Boiss. Asian J. Plant Sci. 2006.
[2] NAJAF NAJAFI, M.; Arianmehr, A.; Sani, A.M. Preparation of Barije (Ferula Gummosa) Essential Oil–loaded Liposomes and Evaluation of Physical and Antibacterial Effect on Escherichia Coli O157: H7. J. Food Prot. 2020, 83, 511–517.
[3] Talebi Kouyakhi, E.; Naghavi, M.R.; Alayhs, M. Study of the Essential Oil Variation of Ferula Gummosa Samples from Iran. Chem. Nat. Compd. 2008, 44, 124–126.
[4] Abedi, D.; Jalali, M.; Sadeghi, N. Composition and Antimicrobial Activity of Oleogumresin of Ferula Gumosa Bioss. Essential Oil Using Alamar BlueTM. Res. Pharm. Sci. 2009, 3, 41–45.
[5] Jalali, H.T.; Petronilho, S.; Villaverde, J.J.; Coimbra, M.A.; Domingues, M.R.M.; Ebrahimian, Z.J.; Silvestre, A.J.D.; Rocha, S.M. Assessment of the Sesquiterpenic Profile of Ferula Gummosa Oleo-Gum-Resin (Galbanum) from Iran. Contributes to Its Valuation as a Potential Source of Sesquiterpenic Compounds. Ind. Crops Prod. 2013, 44, 185–191.
[6] Jalali, H.T.; Petronilho, S.; Villaverde, J.J.; Coimbra, M.A.; Domingues, M.R.M.; Ebrahimian, Z.J.; Silvestre, A.J.D.; Rocha, S.M. Deeper Insight into the Monoterpenic Composition of Ferula Gummosa Oleo-Gum-Resin from Iran. Ind. Crops Prod. 2012, 36, 500–507.
[7] Ghasemi, Y.; Faridi, P.; Mehregan, I.; Mohagheghzadeh, A. Ferula Gummosa Fruits: An Aromatic Antimicrobial Agent. Chem. Nat. Compd. 2005, 41, 311–314.
[8] Ghannadi, A.; Amree, S. Volatile Oil Constituents of Ferula Gummosa Boiss. from Kashan, Iran. J. Essent. Oil Res. 2002, 14, 420–421.
[9] Jalali, H.T.; Ebrahimian, Z.J.; Evtuguin, D. V; Neto, C.P. Chemical Composition of Oleo-Gum-Resin from Ferula Gummosa. Ind. Crops Prod. 2011, 33, 549–553.
[10] Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep Eutectic Solvent-Based Valorization of Spent Coffee Grounds. Food Chem. 2018, 255, 357–364.
[11]Barbieri, J.B.; Goltz, C.; Cavalheiro, F.B.; Toci, A.T.; Igarashi-Mafra, L.; Mafra, M.R. Deep Eutectic Solvents Applied in the Extraction and Stabilization of Rosemary (Rosmarinus Officinalis L.) Phenolic Compounds. Ind. Crops Prod. 2020, 144, 112049.
[12]Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601.
[13] Wang, M.; Wang, J.; Zhou, Y.; Zhang, M.; Xia, Q.; Bi, W.; Chen, D.D.Y. Ecofriendly Mechanochemical Extraction of Bioactive Compounds from Plants with Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 6297–6303.
[14] Cao, J.; Yang, M.; Cao, F.; Wang, J.; Su, E. Well-Designed Hydrophobic Deep Eutectic Solvents as Green and Efficient Media for the Extraction of Artemisinin from Artemisia Annua Leaves. ACS Sustain. Chem. Eng. 2017, 5, 3270–3278.
[15] Machmudah, S.; Lestari, S.D.; Kanda, H.; Winardi, S.; Goto, M. Subcritical Water Extraction Enhancement by Adding Deep Eutectic Solvent for Extracting Xanthone from Mangosteen Pericarps. J. Supercrit. Fluids 2018, 133, 615–624.
[16] Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147.
[17] Syakfanaya, A.M.; Saputri, F.C.; Mun’im, A. Simultaneously Extraction of Caffeine and Chlorogenic Acid from Coffea Canephora Bean Using Natural Deep Eutectic Solvent-Based Ultrasonic Assisted Extraction. Pharmacogn. J. 2019, 11.
[18] Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents–solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071.
[19]Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19.
[20]Shahbaz, K.; Baroutian, S.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Densities of Ammonium and Phosphonium Based Deep Eutectic Solvents: Prediction Using Artificial Intelligence and Group Contribution Techniques. Thermochim. Acta 2012, 527, 59–66.
[21] Maugeri, Z.; de María, P.D. Novel Choline-Chloride-Based Deep-Eutectic-Solvents with Renewable Hydrogen Bond Donors: Levulinic Acid and Sugar-Based Polyols. Rsc Adv. 2012, 2, 421–425.
[22] Ribeiro, B.D.; Coelho, M.A.Z.; Marrucho, I.M. Extraction of Saponins from Sisal (Agave Sisalana) and Juá (Ziziphus Joazeiro) with Cholinium-Based Ionic Liquids and Deep Eutectic Solvents. Eur. Food Res. Technol. 2013, 237, 965–975.
[23]Yuniarti, E.; Saputri, F.C.; Munâ, A. Application of the Natural Deep Eutectic Solvent Choline Chloride-Sorbitol to Extract Chlorogenic Acid and Caffeine from Green Coffee Beans (Coffea Canephora). J. Appl. Pharm. Sci. 2019, 9, 82–90.
[24]Ahmad, I.; Pertiwi, A.S.; Kembaren, Y.H.; Rahman, A.; Munâ, A. Application of Natural Deep Eutectic Solvent-Based Ultrasonic Assisted Extraction of Total Polyphenolic and Caffeine Content from Coffe Beans (Coffea Beans L.) for Instant Food Products. J. Appl. Pharm. Sci. 2018, 8, 138–143.
[25] Nadia, J.; Shahbaz, K.; Ismail, M.; Farid, M.M. Approach for Polygodial Extraction from Pseudowintera Colorata (Horopito) Leaves Using Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2018, 6, 862–871.
[26]Cao, J.; Chen, L.; Li, M.; Cao, F.; Zhao, L.; Su, E. Efficient Extraction of Proanthocyanidin from Ginkgo Biloba Leaves Employing Rationally Designed Deep Eutectic Solvent-Water Mixture and Evaluation of the Antioxidant Activity. J. Pharm. Biomed. Anal. 2018, 158, 317–326.
[27]Křížek, T.; Bursová, M.; Horsley, R.; Kuchař, M.; Tůma, P.; Čabala, R.; Hložek, T. Menthol-Based Hydrophobic Deep Eutectic Solvents: Towards Greener and Efficient Extraction of Phytocannabinoids. J. Clean. Prod. 2018, 193, 391–396.
[28] Athanasiadis, V.; Grigorakis, S.; Lalas, S.; Makris, D.P. Highly Efficient Extraction of Antioxidant Polyphenols from Olea Europaea Leaves Using an Eco-Friendly Glycerol/glycine Deep Eutectic Solvent. Waste and Biomass Valorization 2018, 9, 1985–1992.
[29] Liew, S.Q.; Ngoh, G.C.; Yusoff, R.; Teoh, W.H. Acid and Deep Eutectic Solvent (DES) Extraction of Pectin from Pomelo (Citrus Grandis (L.) Osbeck) Peels. Biocatal. Agric. Biotechnol. 2018, 13, 1–11.
[30] Ma, W.; Row, K.H. Optimized Extraction of Bioactive Compounds from Herba Artemisiae Scopariae with Ionic Liquids and Deep Eutectic Solvents. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 459–466.
[31] De Faria, E.L.P.; Do Carmo, R.S.; Cláudio, A.F.M.; Freire, C.S.R.; Freire, M.G.; Silvestre, A.J.D. Deep Eutectic Solvents as Efficient Media for the Extraction and Recovery of Cynaropicrin from Cynara Cardunculus L. Leaves. Int. J. Mol. Sci. 2017, 18, 2276.
[32] Dai, Y.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents Providing Enhanced Stability of Natural Colorants from Safflower (Carthamus Tinctorius). Food Chem. 2014, 159, 116–121.
[33]Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and Efficient Extraction of Rutin from Tartary Buckwheat Hull by Using Natural Deep Eutectic Solvents. Food Chem. 2017, 221, 1400–1405.
[34] Wang, T.; Jiao, J.; Gai, Q.-Y.; Wang, P.; Guo, N.; Niu, L.-L.; Fu, Y.-J. Enhanced and Green Extraction Polyphenols and Furanocoumarins from Fig (Ficus Carica L.) Leaves Using Deep Eutectic Solvents. J. Pharm. Biomed. Anal. 2017, 145, 339–345.
[35] Zhao, B.-Y.; Xu, P.; Yang, F.-X.; Wu, H.; Zong, M.-H.; Lou, W.-Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora Japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755.
[36]Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Application of Natural Deep Eutectic Solvents for Extraction and Determination of Phenolics in Cajanus Cajan Leaves by Ultra Performance Liquid Chromatography. Sep. Purif. Technol. 2015, 149, 237–244.