[1] Arslan, D., & Özcan, M.M. (2010). Study the effect of sun, oven and microwave drying on quality of onion slices. LWT - Food Sci Technol, 43:1121–7. https://doi.org/10.1016/j.lwt.2010.02.019.
[2] FAOSTAT. (2022). Food and Agriculture Organization of the United Nations.
[3] Süfer, Ö., Sezer, S., & Demir, H. (2017). Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. J Food Process Preserv, 41. https://doi.org/10.1111/jfpp.13239.
[4] Compaoré, A., Putranto, A., Dissa, A.O., Ouoba, S., Rémond, R., & Rogaume, Y. (2019). Convective drying of onion: modeling of drying kinetics parameters. Journal of Food Science Technology, 56:3347–54. https://doi.org/10.1007/s13197-019-03817-3.
[5] Mitra, J., Shrivastava, S.L., & Rao, P.S. (2012). Onion dehydration: A review. Journal of Food Science Technology, 49:267–77. https://doi.org/10.1007/s13197-011-0369-1.
[6] Praveen Kumar, D.G., Hebbar, H.U., & Ramesh, M.N. (2006). Suitability of thin layer models for infrared-hot air-drying of onion slices. LWT - Food Sci Technol, 39:700–5. https://doi.org/10.1016/j.lwt.2005.03.021.
[7] Sasongko, SB., Hadiyanto, H., Djaeni, M., Perdanianti, A.M., & Utari, F.D. (2020). Effects of drying temperature and relative humidity on the quality of dried onion slice. Heliyon, 6:e04338. https://doi.org/10.1016/j.heliyon.2020.e04338.
[8] Djaeni, M., Arifin, U.F., & Sasongko, S.B. (2017). Physical-chemical quality of onion analyzed under drying temperature. AIP Conf Proc, 1823. https://doi.org/10.1063/1.4978114.
[9] Ajuebor, F., Aworanti, O.A., Agbede, O.O., Agarry, S.E., Afolabi, T.J., & Ogunleye, O.O. (2022). Drying Process Optimization and Modelling the Drying Kinetics and Quality Attributes of Dried Chili Pepper (Capsicum frutescens L.). Trends Sci, 19:1–21. https://doi.org/10.48048/tis.2022.5752.
[10]El Khadraoui, A., Bouadila, S., Kooli, S., Farhat, A., & Guizani, A. (2017). Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. J Clean Prod, 148:37–48. https://doi.org/10.1016/j.jclepro.2017.01.149.
[11] Mortezapour, H., Rashedi, S.J., Akhavan, H.R., & Maghsoudi, H. (2017). Experimental analysis of a solar dryer equipped with a novel heat recovery system for onion drying. J Agric Sci Technol, 19:1227–40.
[12]Salehi, F., & Kashaninejad, M. (2018). Modeling of moisture loss kinetics and color changes in the surface of lemon slice during the combined infrared-vacuum drying. Inf Process Agric, 5:516–23. https://doi.org/10.1016/j.inpa.2018.05.006.
[13] Taheri-Garavand, A., Karimi, F., Karimi, M., Lotfi, V., & Khoobbakht, G. (2018). Hybrid response surface methodology–artificial neural network optimization of drying process of banana slices in a forced convective dryer. Food Sci Technol Int, 24:277–91. https://doi.org/10.1177/1082013217747712.
[14]Parhizi, Z., Karami, H., Golpour, I., Kaveh, M., & Szymanek, M. (2022). sustainability Modeling and Optimization of Energy and Exergy Parameters of a Hybrid-Solar Dryer for Basil Leaf Drying Using RSM.
[15]Ba, D., & Boyaci, I.H. (2007). Modeling and optimization i: Usability of response surface methodology. J Food Eng, 78:836–45. https://doi.org/10.1016/j.jfoodeng.2005.11.024.
[16] Šumić, Z., Tepić, A., Vidović, S., Vladić, J., & Pavlić, B. (2016). Drying of shiitake mushrooms in a vacuum dryer and optimization of the process by response surface methodology (RSM). J Food Meas Charact, 10:425–33. https://doi.org/10.1007/s11694-016-9321-4.
[17]Šumić, Z., Vakula, A., Tepić, A., Čakarević, J., Vitas, J., & Pavlić, B. (2016). Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem, 203:465–75. https://doi.org/10.1016/j.foodchem.2016.02.109.
[18] Taghinezhad, E., Kaveh, M., Szumny, A., & Figiel, A. (2023). Quantifying of the Best Model for Prediction of Greenhouse Gas Emission, Quality, and Thermal Property Values during Drying Using RSM (Case Study: Carrot). Appl Sci, 13. https://doi.org/10.3390/app13158904.
[19] Taghinezhad, E., Kaveh, M., & Szumny, A. (2021). Optimization and prediction of the drying and quality of turnip slices by convective-infrared dryer under various pretreatments by rsm and anfis methods. Foods, 10. https://doi.org/10.3390/foods10020284.
[20]Bazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). J Saudi Soc Agric Sci, 17:408–15. https://doi.org/10.1016/j.jssas.2016.09.007.
[21] Zalazar-Garcia, D., Román, M.C., Fernandez, A., Asensio, D., Zhang, X., & Fabani, MP. (2022). Exergy, energy, and sustainability assessments applied to RSM optimization of integrated convective air-drying with pretreatments to improve the nutritional quality of pumpkin seeds. Sustain Energy Technol Assessments, 49:101763. https://doi.org/10.1016/J.SETA.2021.101763.
[22]Kaur Dhillon, G., Kour, A., & Gupta, N. (2022). Optimization of Low-cost Drying Technology for Preservation of Peach (Prunus Persica) Using RSM. Int J Fruit Sci, 22:525–38. https://doi.org/10.1080/15538362.2022.2070576.
[23]Amiri Chayjan, R., Bahrabad, S.M.T., & Rahimi Sardari, F. (2014). Modeling infrared-covective drying of pistachio nuts under fixed and fluidized bed conditions. J Food Process Preserv, 38:1224–33. https://doi.org/10.1111/jfpp.12083.
[24] Maftoonazad, N., Dehghani, M.R., & Ramaswamy, H.S. (2022). Hybrid microwave-hot air tunnel drying of onion slices: Drying kinetics, energy efficiency, product rehydration, color, and flavor characteristics. Dry Technol, 40:966–86. https://doi.org/10.1080/07373937.2020.1841790.
[25]Doymaz, I. (2007). Air-drying characteristics of tomatoes. J Food Eng, 78:1291–7. https://doi.org/10.1016/j.jfoodeng.2005.12.047.
[26] Lopez, A., Iguaz, A., Esnoz, A., & Virseda, P. (2000). Thin-layer drying behaviour of vegetable wastes from wholesale market. Dry Technol, 18:995–1006. https://doi.org/10.1080/07373930008917749.
[27]Bor, J.Y., Chen, H.Y., & Yen, G.C. (2006). Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. J Agric Food Chem, 54:1680–6. https://doi.org/10.1021/jf0527448.
[28]Wang, W., Li, M., Hassanien, R.H.E., Wang, Y., & Yang, L. (2018). Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Appl Therm Eng, 134:310–21. https://doi.org/10.1016/j.applthermaleng.2018.01.115.
[29]Beigi, M. (2016). Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Sci Technol, 36:145–50. https://doi.org/10.1590/1678-457X.0068.
[30] Ma, S.S., Tseng, C.Y., Jian, Y.R., Yang, T.H., & Chen, S.L. (2018). Utilization of waste heat for energy conservation in domestic dryers. Energy, 162:185–99. https://doi.org/10.1016/j.energy.2018.08.011.
[31]Aghbashlo, M., Mobli, H., Rafiee, S., & Madadlou, A. (2012). Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosyst Eng, 111:229–41. https://doi.org/10.1016/j.biosystemseng.2011.12.001.
[32] Yolmeh, M., Jafari, S.M. (2017). Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol, 10:413–33. https://doi.org/10.1007/s11947-016-1855-2.
[33] Shi, J., Pan, Z., McHugh, T.H., Wood, D., Hirschberg, E., & Olson, D. (2008). Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. Lwt, 41:1962–72. https://doi.org/10.1016/j.lwt.2008.01.003.
[34]Olanipekun, B.F., Tunde-Akintunde, T.Y., Oyelade, O.J., Adebisi, M.G., Adenaya, T.A. (2015). Mathematical Modeling of Thin-Layer Pineapple Drying. J Food Process Preserv, 39:1431–41. https://doi.org/10.1111/jfpp.12362.
[35] Doymaz, I. (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transf Und Stoffuebertragung, 47:277–85. https://doi.org/10.1007/s00231-010-0722-3.
[36]wang, H., Liu, Z.L., Vidyarthi, S.K., Wang, Q.H., Gao, L., & Li, B.R. (2020). Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes. Dry Technol, 39:418–31. https://doi.org/10.1080/07373937.2020.1818254.
[37] Feng, Y., Xu, B., ElGasim, A., Yagoub, A., Ma, H., Sun, Y., & Xu, X. (2021). Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chem, 343:128404. https://doi.org/10.1016/j.foodchem.2020.128404.
[38] Kaveh, M., Chayjan, R.A., Golpour, I., Poncet, S., Seirafi, F., & Khezri, B. (2021). Evaluation of exergy performance and onion drying properties in a multi-stage semi-industrial continuous dryer: Artificial neural networks (ANNs) and ANFIS models. Food Bioprod Process, 127:58–76. https://doi.org/10.1016/j.fbp.2021.02.010.
[39] Nyangena, I.O., Owino, W.O., Imathiu, S., & Ambuko, J. (2019). Effect of pretreatments prior to drying on antioxidant properties of dried mango slices. Sci African, 6:e00148. https://doi.org/10.1016/j.sciaf.2019.e00148.
[40] Mugi, V.R., & Chandramohan, V.P. (2021). Energy and exergy analysis of forced and natural convection indirect solar dryers: Estimation of exergy inflow, outflow, losses, exergy efficiencies and sustainability indicators from drying experiments. Journal of Cleaner Production, 282. https://doi.org/10.1016/j.jclepro.2020.124421.
[41]Lakshmi, D.V.N., Muthukumar, P., & Nayak, P.K. (2020). Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper. Renewable Energy, https://doi.org/10.1016/j.renene.2020.11.144.
[42] Liu, J., Li, X., Yang, Y., Wei, H., Xue, L., & Zhao, M. (2021). Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM). Food Science Nutrition, 9:4568–77. https://doi.org/10.1002/fsn3.2444.