مقایسه وضعیت های بازتابشی و تقابلی طیف سنجی فروسرخ نزدیک در امکان سنجی تشخیص غیرمخرب تازگی پودر گیاه دارویی سیر (Garlic)

نویسندگان
1 عضو هیئت علمی، گروه مکانیک بیوسیستم، دانشگاه اراک، اراک، ایران
2 عضو هیئت علمی، گروه گیاهان دارویی، دانشگاه اراک، اراک، ایران
چکیده
پودر گیاه دارویی سیر از حیث تجاری اهمیت زیادی دارد و به عنوان افزودنی در صنایع غذایی و دارویی کاربرد فراوانی دارد. روش­ های طیف ­سنجی به­ عنوان یک روش غیر­مخرب در حوزه سنجش کیفیت محصولات غذایی، تولیدات و فرآورده­ های گیاهان دارویی مورد استفاده قرار می­ گیرد. در پژوهش حاضر کارایی و پتانسیل دو وضعیت پرکاربرد بازتابشی و تقابلی در طیف­ سنجی فروسرخ نزدیک در محدوده 936 تا1660 نانومتر برای امکان­ سنجی تشخیص تازگی پودر سیر مقایسه شدند. در هریک از وضعیت­های طیف ­برداری، تعداد ۱۲۰ طیف در 2 تکرار از نمونه‌های پودر سیر اخذ شد. 25 درصد از طیف­ ها قبل از مدل­سازی به­ طور تصادفی برای اعتبارسنجی در نظر گرفته شدند و تدوین مدل­ ها با طیف­ های باقیمانده به انجام رسید. برای حذف نوفه ­های احتمالی تأثیر پیش ­پردازش­ های رایج روی عملکرد طبقه­ بندهای شبکه ­های مصنوعی عصبی (ANN)، ماشین بردار پشتیبان (SVM) و الگوریتم k-نزدیک­ترین همسایه (KNN) بررسی شد. از روش آنالیز مؤلفه ­های اصلی (PCA) برای کاهش متغیرهای طیفی استفاده شد و چهار مؤلفه اصلی اول به عنوان ورودی طبقه­ بندها در نظر گرفته شدند. در وضعیت طیف­ برداری تقابلی، طبقه ­بندهای SVM و KNN با دقت تفکیک 100 درصد، طیف­ های اخذشده از پودرها در سه بازه زمانی 3 روز، 3 ماه و 12 ماه را جداسازی نمودند. طبقه­بند ANN در وضعیت بازتابی به­ جز طیف­ های خام (بدون پیش­پردازش) در همه پیش ­پردازش­ های مورد بررسی، دقت 100 درصد در تفکیک طیف­ های ذکرشده حاصل شد. طیف­ سنجی فرو سرخ نزدیک در باند 936-1660 نانومتر به کمک شیمی ­سنجی برای تشخیص سریع تازگی پودر سیر پتانسیل لازم را دارد. وضعیت طیف ­برداری تقابلی با در نظرگرفتن سهولت کاربرد در صنعت و آزمایشگاه نسبت به وضعیت بازتابشی برتری دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of reflectance and intractance modes of near-infrared spectroscopy in the feasibility of non-destructive detection of Garlic powder freshness

نویسندگان English

Reza Mohammadigol 1
Mahmoud Karimi 1
Reza Shahhoseini 2
1 Department of Biosystems Mechanics Engineering, Arak University, Arak, Iran, P.O.Box: 38156-8-8349
2 Department of Medicinal Plants, Arak University, Arak, Iran, P.O.Box: 38156-8-8349
چکیده English

Garlic medicinal plant powder is significant from a commercial perspective and is widely used as an additive in the food and pharmaceutical industries. Spectroscopic techniques serve as non-destructive methods for assessing the quality of food products, medicinal plants, and related products. In the present study, the efficiency and potential of two widely used modes, reflectance and intractance, in near-infrared spectroscopy in the range of 936 to 1660 nm were compared to assess the feasibility of distinguishing fresh garlic powder. In each spectroscopy mode, 120 spectra in 2 replicates were obtained from garlic powder samples, resulting in a total of 240 spectra. Prior to modeling, 25% of the spectra were randomly selected for validation, while the remaining spectra were used to compile the models. To mitigate potential noise, the impact of common pre-processing methods on the performance of the artificial neural network (ANN), support vector machine (SVM), and k-nearest neighbors (KNN) classifiers was investigated. The principle components analysis (PCA) technique was employed to reduce the dimensionality of the spectral variables, and the first four principal components were used as classifiers inputs. In the intractance spectroscopy condition, the SVM and KNN classifiers separated spectra obtained from powders at 3 days, 3 months, and 12 months with 100% accuracy. The ANN classifier achieved 100% accuracy in distinguishing the mentioned spectra in all preprocessing conditions under investigation, except for the raw spectra (without preprocessing). Near-infrared spectroscopy in the 1660-936 nm range, combined with chemometrics, is effective for quickly detecting the freshness of garlic powder. Considering its ease of application in both industrial and laboratory settings, intractance spectroscopy mode is superior to reflectance mode.

کلیدواژه‌ها English

Medicinal Plant
Garlic powder
Freshness
spectroscopy
Reflectance
Intractance
1. Morales-Gonzalez JA, Madrigal-Bujaidar E, Sanchez-Gutierrez M, Izquierdo-Vega JA, Valadez-Vega MC, Alvarez-Gonzalez I, et al. (2019). Garlic (Allium sativum L.): A brief review of its antigenotoxic effects. Foods. 8(8): 343. doi.org/10.3390/foods8080343
2. Tudu CK, Dutta T, Ghorai M, Biswas P, Samanta D, Oleksak P, et al. (2022). Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Frontiers in Nutrition. 9: 929554. doi.org/10.3389/fnut.2022.929554
3. Suleria HR, Butt MS, Khalid N, Sultan S, Raza A. (2015). Aleem M, et al. Garlic (Allium sativum): diet based therapy of 21st century–a review. Asian Pacific Journal of Tropical Disease. 5(4): 271-278. doi.org/10.1016/S2222-1808(14)60782-9
4. Sunanta P, Kontogiorgos V, Pankasemsuk T, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Sommano SR. (2023). The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Frontiers in Nutrition, 10: 1-13. doi.org/10.3389/fnut.2023.1142784
5. Kamenetsky R. (2007). Garlic: Botany and horticulture. In: Horticulture reviews, Ed. Janick J. John Wiley and Sons Publishing, New Jersey, U.S.A. 33: 123-138. doi.org/10.1002/9780470168011.ch2
6. El-Saber Batiha G, Magdy Beshbishy AG, Wasef L, Elewa YH, Al-Sagan A, Abd El-Hack ME, et al. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 12(3): 872. doi.org/10.3390/nu12030872
7. Martins N, Petropoulos S., Ferreira IC. (2016). Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: A review. Food chemistry. 211: 41-50. doi.org/10.1016/j.foodchem.2016.05.029
8. Gonzalez RE, Burba, JL, Camargo AB. (2013). A physiological indicator to estimate allicin content in garlic during storage. Journal of Food Biochemistry. 37(4): 449-455. doi.org/10.1111/j.1745-4514.2011.00647.x
9. Naheed Z, Cheng Z, Wu C, Wen Y, Ding H. (2017). Total polyphenols, total flavonoids, allicin and antioxidant capacities in garlic scape cultivars during controlled atmosphere storage. Postharvest Biology and Technology. 131: 39-45. doi.org/10.1016/j.postharvbio.2017.05.002
10. Hughes J, Collin HA, Tregova A, Tomsett AB, Cosstick R, Jones MG. (2006). Effect of low storage temperature on some of the flavor precursors in Garlic (Allium Sativum). Plant Foods for Human Nutrition. 61: 78-82. doi.org/10.1007/s11130-006-0018-4
11. Salehi B, Zucca P, Orhan IE, Azzini E, Adetunji CO, Mohammed SA, et al. (2019). Allicin and health: A comprehensive review. Trends in Food Science and Technology. 86: 502-516. doi.org/10.1016/j.tifs.2019.03.003
12. Zhu D, Sadat A, Joye IJ, Vega C, Rogers MA. (2024). Scientific gastronomy: On the mechanism by which garlic juice and allicin (thio-2-propene-1-sulfinic acid S-allyl ester) stabilize meringues. Food Chemistry. 431: 137121. doi.org/10.1016/j.foodchem.2023.137121
13. Ravindra J, Yathisha UG, Nanjappa DP, Kalladka K, Dhakal R, Chakraborty A. (2023). Allicin extracted from Allium sativum shows potent anti-cancer and antioxidant properties in zebrafish. Biomedicine and Pharmacotherapy. 169: 115854. doi.org/10.1016/j.biopha.2023.115854
14. Cortes V, Blasco J, Aleixos N, Cubero S, Talens P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science and Technology. 85:138-148. doi.org/10.1016/j.tifs.2019.01.015
15. Sanchez-Paternina A, Roman-Ospino AD, Martinez M, Mercado J, Alonso C, Romañach, RJ. (2016). Near infrared spectroscopic transmittance measurements for pharmaceutical powder mixtures. Journal of Pharmaceutical and Biomedical Analysis. 123: 120-127. doi.org/10.1016/j.jpba.2016.02.006
16. OMahony N, Murphy T, Panduru K, Riordan D, Walsh J. (2018). Machine learning algorithms for estimating powder blend composition using near infrared spectroscopy. Paper presented at the 2018 2nd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS). doi.org/10.1109/SIMS.2018.8355297
17. Riu J, Vega A, Boque R, Giussani B. (2022). Exploring the analytical complexities in insect powder analysis using miniaturized NIR spectroscopy. Foods. 11(21): 3524. doi.10.3390/foods11213524.
18. Nicolai BM, Beullen, K, Bobelyn E, Peirs A, Saeys W, Theron KI, et al. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology. 46(2): 99-118. doi.org/10.1016/j.postharvbio.2007.06.024
19. Hemrattrakun P, Nakano K, Boonyakiat D, Ohashi S, Maniwara P, Theanjumpol P, et al. (2021). Comparison of reflectance and interactance modes of visible and near-infrared spectroscopy for predicting persimmon fruit quality. Food Analytical Methods. 14: 117-126. doi.org/10.1007/s12161-020-01853-w
20. Suktanarak S, Teerachaichayut S, Jannok P, Supprung P. (2014). Interactance and reflectance near infrared spectroscopy for freshness evaluation of hen eggs. Paper presented at the III Asia Pacific Symposium on Postharvest Research, Education and Extension: APS2014 1213. doi.org/10.17660/ActaHortic.2018.1213.97
21. Daszykowski M, Kula M, Stanimirova I. (2023). Quantification and detection of ground garlic adulteration using fourier-transform near-infrared reflectance spectra. Foods. 12(18): 3377. doi.org/10.3390/foods12183377
22. Lohumi S, Lee S, Cho BK. (2015). Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sensors and Actuators B: Chemical. 216: 622-628. doi.org/10.1016/j.snb.2015.04.060
23. Wang D, Wei W, Lai Y, Yang X, Li S, Jia L, et al. (2019). Comparing the potential of near-and mid-infrared spectroscopy in determining the freshness of strawberry powder from freshly available and stored strawberry. Journal of Analytical Methods in Chemistry. 2360631. doi.org/10.1155/2019/2360631
24. Rodriguez SD, Rolandelli G, Buera, MP. (2019). Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chemistry. 274: 392-401. doi.org/10.1016/j.foodchem.2018.08.140
25. Kar S, Tudu B, Jana A, Bandyopadhyay R. (2019). FT-NIR spectroscopy coupled with multivariate analysis for detection of starch adulteration in turmeric powder. Food Additives and Contaminants Part A. 36(6): 863-875. doi.org/10.1080/19440049.2019.1600746
26. Jamshidi B, Minaei S, Mohajerani E, Ghassemian H. (2012). Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. Computers and Electronics in Agriculture. 85: 64-69. doi.org/10.1016/j.compag.2012.03.008
27. Teye E, Amuah CL, McGrath T, Elliott C. (2019). Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 217: 147-154. doi.org/10.1016/j.saa.2019.03.085
28. Ishikawa ST, Gulick VC. (2013). An automated mineral classifier using Raman spectra. Computers and Geosciences. 54: 259-268. doi.org/10.1016/j.cageo.2013.01.011
29. Callao MP, Ruisanchez I. (2018). An overview of multivariate qualitative methods for food fraud detection. Food Control. 86: 283-293. doi.org/10.1016/j.foodcont.2017.11.034
30. Amuah CL, Teye E, Lamptey FP, Nyandey K, Opoku-Ansah J, Adueming PW. (2019). Feasibility study of the use of handheld NIR spectrometer for simultaneous authentication and quantification of quality parameters in intact pineapple fruits. Journal of Spectroscopy. 2: 1-9. doi.org/10.1155/2019/5975461
31. Kafle GK, Khot LR, Jarolmasjed S, Yongsheng S, Lewis K. (2016). Robustness of near infrared spectroscopy based spectral features for non-destructive bitter pit detection in honeycrisp apples. Postharvest Biology and Technology. 120: 188-192. doi.org/10.1016/j.postharvbio.2016.06.013
32. Shafiee S, Minaei S. Combined data mining/NIR spectroscopy for purity assessment of lime juice. (2018). Infrared Physics and Technology. 91: 193-199. doi.org/10.1016/j.infrared.2018.04.012
33. Kaiyan L, Chang L, Huiping S, Junhui W, Jiek C. (2021). Review on the Application of Machine Vision Algorithms in Fruit Grading Systems. Paper presented at the Emerging Trends in Intelligent and Interactive Systems and Applications: Proceedings of the 5th International Conference on Intelligent, Interactive Systems and Applications. 271-280. doi.org/10.1007/978-3-030-63784-2_34
34. Acri G, Testagrossa B, Vermiglio G. (2016). FT-NIR analysis of different garlic cultivars. Journal of Food Measurement and Characterization. 10: 127-136. doi.org/10.1007/s11694-015-9286-8
35. Wadood SA, Guo B, Zhang X, Wei Y. (2019). Geographical origin discrimination of wheat kernel and white flour using near‐infrared reflectance spectroscopy fingerprinting coupled with chemometrics. International Journal of Food Science and Technology. 54(6): 2045-2054. doi.org/10.1111/ijfs.14105
36. Horn B, Esslinger S, Pfister M, Fauhl-Hassek C Riedl J. (2018). Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification–Is it data preprocessing that makes the performance. Food Chemistry. 257: 112-119. doi.org/10.1016/j.foodchem.2018.03.007