1. Morales-Gonzalez JA, Madrigal-Bujaidar E, Sanchez-Gutierrez M, Izquierdo-Vega JA, Valadez-Vega MC, Alvarez-Gonzalez I, et al. (2019). Garlic (Allium sativum L.): A brief review of its antigenotoxic effects. Foods. 8(8): 343. doi.org/10.3390/foods8080343
2. Tudu CK, Dutta T, Ghorai M, Biswas P, Samanta D, Oleksak P, et al. (2022). Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Frontiers in Nutrition. 9: 929554. doi.org/10.3389/fnut.2022.929554
3. Suleria HR, Butt MS, Khalid N, Sultan S, Raza A. (2015). Aleem M, et al. Garlic (Allium sativum): diet based therapy of 21st century–a review. Asian Pacific Journal of Tropical Disease. 5(4): 271-278. doi.org/10.1016/S2222-1808(14)60782-9
4. Sunanta P, Kontogiorgos V, Pankasemsuk T, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Sommano SR. (2023). The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Frontiers in Nutrition, 10: 1-13. doi.org/10.3389/fnut.2023.1142784
5. Kamenetsky R. (2007). Garlic: Botany and horticulture. In: Horticulture reviews, Ed. Janick J. John Wiley and Sons Publishing, New Jersey, U.S.A. 33: 123-138. doi.org/10.1002/9780470168011.ch2
6. El-Saber Batiha G, Magdy Beshbishy AG, Wasef L, Elewa YH, Al-Sagan A, Abd El-Hack ME, et al. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 12(3): 872. doi.org/10.3390/nu12030872
7. Martins N, Petropoulos S., Ferreira IC. (2016). Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: A review. Food chemistry. 211: 41-50. doi.org/10.1016/j.foodchem.2016.05.029
8. Gonzalez RE, Burba, JL, Camargo AB. (2013). A physiological indicator to estimate allicin content in garlic during storage. Journal of Food Biochemistry. 37(4): 449-455. doi.org/10.1111/j.1745-4514.2011.00647.x
9. Naheed Z, Cheng Z, Wu C, Wen Y, Ding H. (2017). Total polyphenols, total flavonoids, allicin and antioxidant capacities in garlic scape cultivars during controlled atmosphere storage. Postharvest Biology and Technology. 131: 39-45. doi.org/10.1016/j.postharvbio.2017.05.002
10. Hughes J, Collin HA, Tregova A, Tomsett AB, Cosstick R, Jones MG. (2006). Effect of low storage temperature on some of the flavor precursors in Garlic (Allium Sativum). Plant Foods for Human Nutrition. 61: 78-82. doi.org/10.1007/s11130-006-0018-4
11. Salehi B, Zucca P, Orhan IE, Azzini E, Adetunji CO, Mohammed SA, et al. (2019). Allicin and health: A comprehensive review. Trends in Food Science and Technology. 86: 502-516. doi.org/10.1016/j.tifs.2019.03.003
12. Zhu D, Sadat A, Joye IJ, Vega C, Rogers MA. (2024). Scientific gastronomy: On the mechanism by which garlic juice and allicin (thio-2-propene-1-sulfinic acid S-allyl ester) stabilize meringues. Food Chemistry. 431: 137121. doi.org/10.1016/j.foodchem.2023.137121
13. Ravindra J, Yathisha UG, Nanjappa DP, Kalladka K, Dhakal R, Chakraborty A. (2023). Allicin extracted from Allium sativum shows potent anti-cancer and antioxidant properties in zebrafish. Biomedicine and Pharmacotherapy. 169: 115854. doi.org/10.1016/j.biopha.2023.115854
14. Cortes V, Blasco J, Aleixos N, Cubero S, Talens P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science and Technology. 85:138-148. doi.org/10.1016/j.tifs.2019.01.015
15. Sanchez-Paternina A, Roman-Ospino AD, Martinez M, Mercado J, Alonso C, Romañach, RJ. (2016). Near infrared spectroscopic transmittance measurements for pharmaceutical powder mixtures. Journal of Pharmaceutical and Biomedical Analysis. 123: 120-127. doi.org/10.1016/j.jpba.2016.02.006
16. OMahony N, Murphy T, Panduru K, Riordan D, Walsh J. (2018). Machine learning algorithms for estimating powder blend composition using near infrared spectroscopy. Paper presented at the 2018 2nd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS). doi.org/10.1109/SIMS.2018.8355297
17. Riu J, Vega A, Boque R, Giussani B. (2022). Exploring the analytical complexities in insect powder analysis using miniaturized NIR spectroscopy. Foods. 11(21): 3524. doi.10.3390/foods11213524.
18. Nicolai BM, Beullen, K, Bobelyn E, Peirs A, Saeys W, Theron KI, et al. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology. 46(2): 99-118. doi.org/10.1016/j.postharvbio.2007.06.024
19. Hemrattrakun P, Nakano K, Boonyakiat D, Ohashi S, Maniwara P, Theanjumpol P, et al. (2021). Comparison of reflectance and interactance modes of visible and near-infrared spectroscopy for predicting persimmon fruit quality. Food Analytical Methods. 14: 117-126. doi.org/10.1007/s12161-020-01853-w
20. Suktanarak S, Teerachaichayut S, Jannok P, Supprung P. (2014). Interactance and reflectance near infrared spectroscopy for freshness evaluation of hen eggs. Paper presented at the III Asia Pacific Symposium on Postharvest Research, Education and Extension: APS2014 1213. doi.org/10.17660/ActaHortic.2018.1213.97
21. Daszykowski M, Kula M, Stanimirova I. (2023). Quantification and detection of ground garlic adulteration using fourier-transform near-infrared reflectance spectra. Foods. 12(18): 3377. doi.org/10.3390/foods12183377
22. Lohumi S, Lee S, Cho BK. (2015). Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sensors and Actuators B: Chemical. 216: 622-628. doi.org/10.1016/j.snb.2015.04.060
23. Wang D, Wei W, Lai Y, Yang X, Li S, Jia L, et al. (2019). Comparing the potential of near-and mid-infrared spectroscopy in determining the freshness of strawberry powder from freshly available and stored strawberry. Journal of Analytical Methods in Chemistry. 2360631. doi.org/10.1155/2019/2360631
24. Rodriguez SD, Rolandelli G, Buera, MP. (2019). Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chemistry. 274: 392-401. doi.org/10.1016/j.foodchem.2018.08.140
25. Kar S, Tudu B, Jana A, Bandyopadhyay R. (2019). FT-NIR spectroscopy coupled with multivariate analysis for detection of starch adulteration in turmeric powder. Food Additives and Contaminants Part A. 36(6): 863-875. doi.org/10.1080/19440049.2019.1600746
26. Jamshidi B, Minaei S, Mohajerani E, Ghassemian H. (2012). Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. Computers and Electronics in Agriculture. 85: 64-69. doi.org/10.1016/j.compag.2012.03.008
27. Teye E, Amuah CL, McGrath T, Elliott C. (2019). Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 217: 147-154. doi.org/10.1016/j.saa.2019.03.085
28. Ishikawa ST, Gulick VC. (2013). An automated mineral classifier using Raman spectra. Computers and Geosciences. 54: 259-268. doi.org/10.1016/j.cageo.2013.01.011
29. Callao MP, Ruisanchez I. (2018). An overview of multivariate qualitative methods for food fraud detection. Food Control. 86: 283-293. doi.org/10.1016/j.foodcont.2017.11.034
30. Amuah CL, Teye E, Lamptey FP, Nyandey K, Opoku-Ansah J, Adueming PW. (2019). Feasibility study of the use of handheld NIR spectrometer for simultaneous authentication and quantification of quality parameters in intact pineapple fruits. Journal of Spectroscopy. 2: 1-9. doi.org/10.1155/2019/5975461
31. Kafle GK, Khot LR, Jarolmasjed S, Yongsheng S, Lewis K. (2016). Robustness of near infrared spectroscopy based spectral features for non-destructive bitter pit detection in honeycrisp apples. Postharvest Biology and Technology. 120: 188-192. doi.org/10.1016/j.postharvbio.2016.06.013
32. Shafiee S, Minaei S. Combined data mining/NIR spectroscopy for purity assessment of lime juice. (2018). Infrared Physics and Technology. 91: 193-199. doi.org/10.1016/j.infrared.2018.04.012
33. Kaiyan L, Chang L, Huiping S, Junhui W, Jiek C. (2021). Review on the Application of Machine Vision Algorithms in Fruit Grading Systems. Paper presented at the Emerging Trends in Intelligent and Interactive Systems and Applications: Proceedings of the 5th International Conference on Intelligent, Interactive Systems and Applications. 271-280. doi.org/10.1007/978-3-030-63784-2_34
34. Acri G, Testagrossa B, Vermiglio G. (2016). FT-NIR analysis of different garlic cultivars. Journal of Food Measurement and Characterization. 10: 127-136. doi.org/10.1007/s11694-015-9286-8
35. Wadood SA, Guo B, Zhang X, Wei Y. (2019). Geographical origin discrimination of wheat kernel and white flour using near‐infrared reflectance spectroscopy fingerprinting coupled with chemometrics. International Journal of Food Science and Technology. 54(6): 2045-2054. doi.org/10.1111/ijfs.14105
36. Horn B, Esslinger S, Pfister M, Fauhl-Hassek C Riedl J. (2018). Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification–Is it data preprocessing that makes the performance. Food Chemistry. 257: 112-119. doi.org/10.1016/j.foodchem.2018.03.007