ارزیابی ویژگی‌های پروبیوتیکی و ضد قارچی مخمر غالب جدا شده از عسل

نویسندگان
گروه علوم و مهندسی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
چکیده
همواره ارزیابی قابلیت­های پروبیوتیکی میکروارگانیسم­های جدا شده از بسترهای تحت تنش حائز اهمیت بوده است. از بین میکروارگانیسم­های پروبیوتیک، مخمرها نسبت به باکتری­های اسید لاکتیک به واسطه اندازه بزرگ­تر، قابلیت­های اتصال مناسب­تر و همچنین مقاومت به آنتی­بیوتیک­ها بدون امکان انتقال ژن­های مقاومت متمایز می­شوند. در پژوهش حاضر، ویژگی­های پروبیوتیکی و ضد قارچی مخمر غالب جدا شده از عسل طبیعی مورد ارزیابی قرار گرفت. توالی­یابی محصولات PCR منجر به شناسایی Saccharomyces cerevisiae به عنوان مخمر غالب جدا شده از عسل گردید. همچنین جدایه مذکور، فاقد فعالیت همولیزی بود و از بین ترکیبات ضد قارچ مورد مطالعه، بیشترین حساسیت را نسبت به ناتامایسن نشان داد. علاوه بر این، اگر چه جدایه مخمری مذکور دارای زنده­مانی مناسبی در شرایط شبیه­سازی شده دستگاه گوارش نبود اما از قابلیت­های خود اتصالی (86/93%) و آبگریزی سطحی (36/76%) نسبتا بالایی برخوردار بود. بیشترین قابلیت دگر اتصالی جدایه مذکور نیز با باکتری­های گرم مثبت Bacillus cereus و Staphylococcus aureus مشاهده شد و بازدارندگی جدایه مذکور در برابر B. cereus به ­شکل معنی­داری (05/0p <) از سایر باکتری­های غذازاد مورد مطالعه بیشتر بود. جدایه مذکور همچنین 18/32% اثر ضد قارچی بر علیه Aspergillus flavus از خود نشان داد. بر این اساس، مخمر غالب جدا شده از عسل، از قابلیت­های مناسبی جهت استفاده به عنوان کشت محافظت کننده در صنایع تخمیری برخوردار است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of probiotic and antifungal properties of predominant yeast isolated from honey

نویسندگان English

Fatemeh Taheri
Alireza Sadeghi
Seid Mahdi Jafari
Sara Shahryari
Maryam Zarali
Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده English

Evaluation of probiotic properties of microorganisms isolated from stressful substrates has received considerable attention. Among probiotic microorganisms, yeasts are distinguished from lactic acid bacteria due to their bigger size, better adhesion ability, and resistance to antibiotics without the possibility of transferring resistance genes. In the present study, probiotic and antifungal properties of the predominant yeast isolated from natural honey were investigated. Sequencing results of the PCR products led to the identification of Saccharomyces cerevisiae as the predominant yeast isolated from honey. Moreover, the isolate had no hemolytic activity and showed the highest sensitivity towards natamycin among the studied antimycotic agents. In addition, although the yeast isolate had no proper survival under simulated gastrointestinal conditions, it had relatively high auto-aggregation (93.86%) and cell-surface hydrophobicity (76.36%). The highest co-aggregation ability of the isolate was also observed with Gram-positive bacteria Bacillus cereus and Staphylococcus aureus, and the inhibition activity of the isolate against B. cereus was significantly (p<0.05) higher than those of the other studied food-borne bacteria. The yeast isolate also showed 32.18% antifungal effect on Aspergillus flavus. Accordingly, the predominant yeast isolated from honey has suitable capabilities for application as a protective culture in fermentation industries.

کلیدواژه‌ها English

Natural Honey
probiotic yeast
adhesion capacity
Antibacterial effect
Antifungal activity
[1] Zarali, M., Sadeghi, A., Jafari, S. M., & Sadeghi Mahoonak, A. (2022). Evaluation of antimicrobial and probiotic properties of the predominant LAB isolated from fermented germinated clover seed. Journal of Food Science and Technology (Iran), 19(123), 299-315.
[2] Kiadaliri, F., Sadeghi, A., Khomeiri, M., Kashaninejad, M., & Aalami, M. (2018). Evaluating the antimicrobial properties of Lactobacillus brevis isolated from whole barley sourdough. Journal of Food Science and Technology (Iran), 15(2), 247-57.
[3] Czerucka, D., Piche, T., & Rampal, P. (2007). Yeast as probiotics–Saccharomyces boulardii. Alimentary pharmacology & Therapeutics, 26(6), 767-778.
[4] Pașca, C., Mărghitaș, L. A., Matei, I. A., Bonta, V., Mărgăoan, R., Copaciu, F., Bobiș, O., Campos, M.G. & Dezmirean, D. S. (2021). Screening of some Romanian raw honeys and their probiotic potential evaluation. Applied Sciences, 11(13), 5816.
[5] Zahoor, F., Sooklim, C., Songdech, P., Duangpakdee, O., & Soontorngun, N. (2021). Selection of potential yeast probiotics and a cell factory for xylitol or acid production from honeybee samples. Metabolites, 11(5), 312.
[6] Sen, S., & Mansell, T. J. (2020). Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genetics and Biology, 137, 103333.
[7] Arévalo-Villena, M., Fernandez-Pacheco, P., Castillo, N., Bevilacqua, A., & Pérez, A. B. (2018). Probiotic capability in yeasts: Set-up of a screening method. LWT-Food Science and Technology, 89, 657-665.
[8] Begum, S. B., Roobia, R. R., Karthikeyan, M., & Murugappan, R. M. (2015). Validation of nutraceutical properties of honey and probiotic potential of its innate microflora. LWT-Food Science and Technology, 60(2), 743-750.
[9] Tauber, J. P., Nguyen, V., Lopez, D., & Evans, J. D. (2019). Effects of a resident yeast from the honeybee gut on immunity, microbiota, and Nosema disease. Insects, 10(9), 296.
[10] Khalafalla, G. M., Sadik, M. W., Ali, M. A., & Mohamed, R. S. (2019). Novel potential probiotics from gut microbiota of honeybees (Apis mellifera) in clover feeding season in Egypt. Plant Archives (09725210), 19(2).
[11] Chelucci, E., Chiellini, C., Cavallero, A., & Gabriele, M. (2023). Bio-functional activities of Tuscan bee pollen. Antioxidants, 12(1), 115.
[12] Ebrahimi, M., A. Sadeghi, D. Rahimi, H. Purabdolah, and S. Shahryari (2021). Postbiotic and anti- aflatoxigenic capabilities of Lactobacillus kunkeei as the potential probiotic LAB isolated from the natural honey. Probiotics and Antimicrobial Proteins, 13(2): 343-355.
[13] Srinivas, B., Rani, G. S., Kumar, B. K., Chandrasekhar, B., Krishna, K. V., Devi, T. A., & Bhima, B. (2017). Evaluating the probiotic and therapeutic potentials of Saccharomyces cerevisiae strain (OBS2) isolated from fermented nectar of toddy palm. Applied Microbiology and Technology, 7(1), 1-14.
[14] Jooyandeh, H., & Namazi, P. (2024). Evaluation of probiotic, antibacterial and safety properties of Lacticaseibacillus rhamnosus JCM 1136. Journal of Food Science and Technology (Iran), 21(149), 223-240.
[15] Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226, 1065-1073.
[16] Ragavan, M. L., & Das, N. (2019). Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications. Annals of Microbiology, 69(5), 515-530.
[17] Fadda, M. E., Mossa, V., Deplano, M., Pisano, M. B., & Cosentino, S. (2017). In vitro screening of Kluyveromyces strains isolated from Fiore Sardo cheese for potential use as probiotics. LWT-Food Science and Technology, 75, 100-106.
[18] Danielski, G. M., Imazaki, P. H., de Andrade Cavalari, C. M., Daube, G., Clinquart, A., & de Macedo, R. E. F. (2020). Carnobacterium maltaromaticum as bioprotective culture in vitro and in cooked ham. Meat Science, 162, 108035.
[19] Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single diffusion method. American Journal of Clinical Pathology, 45, 493-496.
[20] Rojo-Bezares, B., Sáenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, F., & Torres, C. (2006). Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. International Journal of Food Microbiology, 111(3), 234-240.
[21] Romero-Luna, H. E., Hernández-Sánchez, H., Ribas-Aparicio, R. M., Cauich-Sánchez, P. I., & Dávila-Ortiz, G. (2019). Evaluation of the probiotic potential of Saccharomyces cerevisiae Strain (C41) isolated from Tibicos by in vitro studies. Probiotics and Antimicrobial Proteins, 11, 794-800.
[22] Tayel, A. A., El‐Tras, W. F., Moussa, S. H., & El‐Agamy, M. A. (2013). Antifungal action of Pichia anomala against aflatoxigenic Aspergillus flavus and its application as a feed supplement. Journal of the Science of Food and Agriculture, 93(13), 3259-3263.
[23] Binetti, A., Carrasco, M., Reinheimer, J., & Suárez, V. (2013). Yeasts from autochthonal cheese starters: technological and functional properties. Journal of Applied Microbiology, 115(2), 434-444.
[24] Suvarna, S., Dsouza, J., Ragavan, M. L., & Das, N. (2018). Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology, 27, 745-753.
[25] Hébrard, G., Hoffart, V., Beyssac, E., Cardot, J. M., Alric, M., & Subirade, M. (2010). Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, 27(4), 292-302.
[26] Alkalbani, N. S., Osaili, T. M., Al-Nabulsi, A. A., Olaimat, A. N., Liu, S. Q., Shah, N. P., ... & Ayyash, M. M. (2022). Assessment of yeasts as potential probiotics: A review of gastrointestinal tract conditions and investigation methods. Journal of Fungi, 8(4), 365.
[27] Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, 421.
[28] Shruthi, B., Deepa, N., Somashekaraiah, R., Adithi, G., Divyashree, S., & Sreenivasa, M. Y. (2022). Exploring biotechnological and functional characteristics of probiotic yeasts: A review. Biotechnology Reports, 34, e00716.
[29] Saksinchai, S., Suzuki, M., Chantawannakul, P., Ohkuma, M., & Lumyong, S. (2012). A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. Fungal Diversity, 52, 123-139.
[30] Silva, M. S., Arruda, L. M., Xavier, P. L., Ramírez, M. X. D., da Silveira, F. A., Santana, W. C., ... & Eller, M. R. (2020). Selection of yeasts from bee products for alcoholic beverage production. Brazilian Journal of Microbiology, 51, 323-334.
[31] Echeverrigaray, S., Scariot, F. J., Foresti, L., Schwarz, L. V., Rocha, R. K. M., da Silva, G. P., ... & Delamare, A. P. L. (2021). Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. International Journal of Food Microbiology, 347, 109200.
[32] Ziuzia, P., Janiec, Z., Wróbel-Kwiatkowska, M., Lazar, Z., & Rakicka-Pustułka, M. (2023). Honey’s yeast—new source of valuable species for industrial applications. International Journal of Molecular Sciences, 24(9), 7889.
[33] Kahraman, T., Buyukunal, S. K., Vural, A., & Altunatmaz, S. S. (2010). Physico-chemical properties in honey from different regions of Turkey. Food Chemistry, 123(1), 41-44.
[34] Voidarou, C., Alexopoulos, A., Plessas, S., Karapanou, A., Mantzourani, I., Stavropoulou, E., Fotou, K., Tzora, A., Skoufos, I. & Bezirtzoglou, E. (2011). Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe, 17(6), 375-379.
[35] Kanpiengjai, A., Khanongnuch, C., Lumyong, S., Kummasook, A., & Kittibunchakul, S. (2020). Characterization of Sporidiobolus ruineniae A45. 2 cultivated in tannin substrate for use as a potential multifunctional probiotic yeast in aquaculture. Journal of Fungi, 6(4), 378.
[36] Gut, A. M., Vasiljevic, T., Yeager, T., & Donkor, O. N. (2019). Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. Journal of Functional Foods, 58, 56-66.
[37] Chaffin, W. L., Lopez-Ribot, J. L., Casanova, M., Gozalbo, D., & Martinez, J. P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiology and Molecular Biology Reviews, 62(1), 130-180.
[38] Andrade, G. C., Andrade, R. P., Oliveira, D. R., Quintanilha, M. F., Martins, F. S., & Duarte, W. F. (2021). Kluyveromyces lactis and Torulaspora delbrueckii: Probiotic characterization, anti-Salmonella effect, and impact on cheese quality. LWT-Food Science and Technology, 151, 112240.
[39] Menezes, A. G. T., de Sousa Melo, D., Ramos, C. L., Moreira, S. I., Alves, E., & Schwan, R. F. (2020). Yeasts isolated from Brazilian fermented foods in the protection against infection by pathogenic food bacteria. Microbial Pathogenesis, 140, 103969.
[40] Coutinho, J. O., Peixoto, T. S., de Menezes, G. C., Carvalho, C. R., Ogaki, M. B., Gomes, E. C., Rosa, C.A., Rosa, L.H., Arantes, R.M., Nicoli, J.R., Tiago, F.C., & Martins, F. S. (2021). In vitro and in vivo evaluation of the probiotic potential of Antarctic yeasts. Probiotics and Antimicrobial Proteins, 13(5), 1338-1354.
[41] Simões, L. A., Cristina de Souza, A., Ferreira, I., Melo, D. S., Lopes, L. A. A., Magnani, M., Schwan, R.F., & Dias, D. R. (2021). Probiotic properties of yeasts isolated from Brazilian fermented table olives. Journal of Applied Microbiology, 131(4), 1983-1997.
[42] Nascimento, B. L., Delabeneta, M. F., Rosseto, L. R. B., Junges, D. S., Paris, A. P., Persel, C., & Gandra, R. F. (2020). Yeast mycocins: a great potential for application in health. FEMS Yeast Research, 20(3), foaa016.
[43] Menezes, A. G. T., Ramos, C. L., Cenzi, G., Melo, D. S., Dias, D. R., & Schwan, R. F. (2020). Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics and Antimicrobial Proteins, 12, 280-288.
[44] Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226, 1065-1073.
[45] Saito, K., Tomita, S., & Nakamura, T. (2019). Aggregation of Lactobacillus brevis associated with decrease in pH by glucose fermentation. Bioscience, Biotechnology, and Biochemistry, 83(8), 1523-1529.
[46] Díaz-Vergara, L., Pereyra, C. M., Montenegro, M., Pena, G. A., Aminahuel, C. A., & Cavaglieri, L. R. (2017). Encapsulated whey–native yeast Kluyveromyces marxianus as a feed additive for animal production. Food Additives & Contaminants: Part A, 34(5), 750-759.
[47] Stewart, G. G. (2018). Yeast flocculation—sedimentation and flotation. Fermentation, 4(2), 28.
[48] Diguță, C. F., Mihai, C., Toma, R. C., Cîmpeanu, C., & Matei, F. (2022). In vitro assessment of yeasts strains with probiotic attributes for aquaculture use. Foods, 12(1), 124.
[49] Wang, X., Li, W., Mahsa, G. C., Zhang, C., Ma, K., Rui, X., & Li, W. (2023). Co-cultivation effects of Lactobacillus helveticus SNA12 and Kluveromyces marxiensis GY1 on the probiotic properties, flavor, and digestion in fermented milk. Food Research International, 169, 112843.
[50] Falah, F., Vasiee, A., Behbahani, B. A., Yazdi, F. T., Moradi, S., Mortazavi, S. A., & Roshanak, S. (2019). Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microbial Pathogenesis, 131, 246-253.
[51] Fernández-Pacheco, P., Ramos Monge, I. M., Fernández-González, M., Poveda Colado, J. M., & Arévalo-Villena, M. (2021). Safety evaluation of yeasts with probiotic potential. Frontiers in Nutrition, 8, 659328.
[52] Qasim, Z. S. (2022). The Antimycotic activity of Rosuvastatin. Iraqi Journal of Pharmacy, 19(2), 84-92.
[53] Kanafani, Z. A., & Perfect, J. R. 2008. Resistance to antifungal agents: mechanisms and clinical impact. Clinical Infectious Diseases, 46(1), pp. 120-128
[54] Goretti, M., Turchetti, B., Buratta, M., Branda, E., Corazzi , l., Vaughan-Martini, A., Buzzini, P. 2009. In vitro antimycotic activity of a Williopsis saturnus killer protein against food spoilage yeasts. International Journal of Food Microbiology, 131(2-3), pp. 178-182.
[55] Cernicka, j., Kozovska, Z., Hnatova, M., Valachovic, m., Hapala, I., Riedl, Z., Hajos, G., Subik, J. 2007. Chemosensitisation of drug-resistant and drug-sensitive yeast cells to antifungals. International Journal of Antimicrobial Agents, 29(2), pp. 170-178.
[56] de Oliveira Coelho, B., Fiorda-Mello, F., de Melo Pereira, G. V., Thomaz-Soccol, V., Rakshit, S. K., de Carvalho, J. C., & Soccol, C. R. (2019). In vitro probiotic properties and DNA protection activity of yeast and lactic acid bacteria isolated from a honey-based kefir beverage. Foods, 8(10), 485.
[57] Hsiung, R. T., Fang, W. T., LePage, B. A., Hsu, S. A., Hsu, C. H., & Chou, J. Y. (2021). In vitro properties of potential probiotic indigenous yeasts originating from fermented food and beverages in Taiwan. Probiotics and Antimicrobial Proteins, 13, 113-124.
[58] Vesterlund, S., Vankerckhoven, V., Saxelin, M., Goossens, H., Salminen, S., & Ouwehand, A. C. (2007). Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. International Journal of Food Microbiology, 116(3), 325–331.
[59] Kia, S., Sadeghi, A., Kashaninejad, M., Khomeiri, M., & Zarali, M. (2023). Evaluation of probiotic properties of Lactobacillus brevis as the predominant LAB isolated from fermented amaranth. Journal of Food Science and Technology (Iran), 19(132), 65-76.
[60] Ruggirello, M., Nucera, D., Cannoni, M., Peraino, A., Rosso, F., Fontana, M., Cocolin, L., & Dolci, P. (2019). Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International, 115, 519-525.
[61] da Cunha, T., Ferraz, L. P., Wehr, P. P., & Kupper, K. C. (2018). Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum. International Journal of Food Microbiology, 276, 20-27.
[62] Kunyeit, L., Kurrey, N. K., Anu-Appaiah, K. A., & Rao, R. P. (2019). Probiotic yeasts inhibit virulence of non-albicans Candida species. Molecular Biology & Microbiology, 10(5), e02307-19.
[63] Dikmetas, D. N., Özer, H., & Karbancıoglu-Guler, F. (2023). Biocontrol potential of antagonistic yeasts on In Vitro and In Vivo Aspergillus Growth and Its AFB1 Production. Toxins, 15(6), 402.
[64] Gil-Rodríguez, A. M., & Garcia-Gutierrez, E. (2021). Antimicrobial mechanisms and applications of yeasts. Advances in Applied Microbiology, 114, 37–72.
[65] Purabdolah, H., Sadeghi, A., Ebrahimi, M., Kashaninejad, M., & Mohamadzadeh, J. (2022). Evaluation of probiotic and antifungal properties of the predominant LAB isolated from fermented acorn (Quercus persica). Journal of Food Science and Technology (Iran), 19(124), 171-183.
[66] Rahimi, D., Sadeghi, A., Kashaninejad, M., & Ebrahimi, M. (2024). Postbiotic characterization of a potential probiotic yeast isolate, and its microencapsulation in alginate beads coated layer-by-layer with chitosan. Heliyon, 10(7).