[1] Zarali, M., Sadeghi, A., Jafari, S. M., & Sadeghi Mahoonak, A. (2022). Evaluation of antimicrobial and probiotic properties of the predominant LAB isolated from fermented germinated clover seed. Journal of Food Science and Technology (Iran), 19(123), 299-315.
[2] Kiadaliri, F., Sadeghi, A., Khomeiri, M., Kashaninejad, M., & Aalami, M. (2018). Evaluating the antimicrobial properties of Lactobacillus brevis isolated from whole barley sourdough. Journal of Food Science and Technology (Iran), 15(2), 247-57.
[3] Czerucka, D., Piche, T., & Rampal, P. (2007). Yeast as probiotics–Saccharomyces boulardii. Alimentary pharmacology & Therapeutics, 26(6), 767-778.
[4] Pașca, C., Mărghitaș, L. A., Matei, I. A., Bonta, V., Mărgăoan, R., Copaciu, F., Bobiș, O., Campos, M.G. & Dezmirean, D. S. (2021). Screening of some Romanian raw honeys and their probiotic potential evaluation. Applied Sciences, 11(13), 5816.
[5] Zahoor, F., Sooklim, C., Songdech, P., Duangpakdee, O., & Soontorngun, N. (2021). Selection of potential yeast probiotics and a cell factory for xylitol or acid production from honeybee samples. Metabolites, 11(5), 312.
[6] Sen, S., & Mansell, T. J. (2020). Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genetics and Biology, 137, 103333.
[7] Arévalo-Villena, M., Fernandez-Pacheco, P., Castillo, N., Bevilacqua, A., & Pérez, A. B. (2018). Probiotic capability in yeasts: Set-up of a screening method. LWT-Food Science and Technology, 89, 657-665.
[8] Begum, S. B., Roobia, R. R., Karthikeyan, M., & Murugappan, R. M. (2015). Validation of nutraceutical properties of honey and probiotic potential of its innate microflora. LWT-Food Science and Technology, 60(2), 743-750.
[9] Tauber, J. P., Nguyen, V., Lopez, D., & Evans, J. D. (2019). Effects of a resident yeast from the honeybee gut on immunity, microbiota, and Nosema disease. Insects, 10(9), 296.
[10] Khalafalla, G. M., Sadik, M. W., Ali, M. A., & Mohamed, R. S. (2019). Novel potential probiotics from gut microbiota of honeybees (Apis mellifera) in clover feeding season in Egypt. Plant Archives (09725210), 19(2).
[11] Chelucci, E., Chiellini, C., Cavallero, A., & Gabriele, M. (2023). Bio-functional activities of Tuscan bee pollen. Antioxidants, 12(1), 115.
[12] Ebrahimi, M., A. Sadeghi, D. Rahimi, H. Purabdolah, and S. Shahryari (2021). Postbiotic and anti- aflatoxigenic capabilities of Lactobacillus kunkeei as the potential probiotic LAB isolated from the natural honey. Probiotics and Antimicrobial Proteins, 13(2): 343-355.
[13] Srinivas, B., Rani, G. S., Kumar, B. K., Chandrasekhar, B., Krishna, K. V., Devi, T. A., & Bhima, B. (2017). Evaluating the probiotic and therapeutic potentials of Saccharomyces cerevisiae strain (OBS2) isolated from fermented nectar of toddy palm. Applied Microbiology and Technology, 7(1), 1-14.
[14] Jooyandeh, H., & Namazi, P. (2024). Evaluation of probiotic, antibacterial and safety properties of Lacticaseibacillus rhamnosus JCM 1136. Journal of Food Science and Technology (Iran), 21(149), 223-240.
[15] Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226, 1065-1073.
[16] Ragavan, M. L., & Das, N. (2019). Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications. Annals of Microbiology, 69(5), 515-530.
[17] Fadda, M. E., Mossa, V., Deplano, M., Pisano, M. B., & Cosentino, S. (2017). In vitro screening of Kluyveromyces strains isolated from Fiore Sardo cheese for potential use as probiotics. LWT-Food Science and Technology, 75, 100-106.
[18] Danielski, G. M., Imazaki, P. H., de Andrade Cavalari, C. M., Daube, G., Clinquart, A., & de Macedo, R. E. F. (2020). Carnobacterium maltaromaticum as bioprotective culture in vitro and in cooked ham. Meat Science, 162, 108035.
[19] Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single diffusion method. American Journal of Clinical Pathology, 45, 493-496.
[20] Rojo-Bezares, B., Sáenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, F., & Torres, C. (2006). Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. International Journal of Food Microbiology, 111(3), 234-240.
[21] Romero-Luna, H. E., Hernández-Sánchez, H., Ribas-Aparicio, R. M., Cauich-Sánchez, P. I., & Dávila-Ortiz, G. (2019). Evaluation of the probiotic potential of Saccharomyces cerevisiae Strain (C41) isolated from Tibicos by in vitro studies. Probiotics and Antimicrobial Proteins, 11, 794-800.
[22] Tayel, A. A., El‐Tras, W. F., Moussa, S. H., & El‐Agamy, M. A. (2013). Antifungal action of Pichia anomala against aflatoxigenic Aspergillus flavus and its application as a feed supplement. Journal of the Science of Food and Agriculture, 93(13), 3259-3263.
[23] Binetti, A., Carrasco, M., Reinheimer, J., & Suárez, V. (2013). Yeasts from autochthonal cheese starters: technological and functional properties. Journal of Applied Microbiology, 115(2), 434-444.
[24] Suvarna, S., Dsouza, J., Ragavan, M. L., & Das, N. (2018). Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology, 27, 745-753.
[25] Hébrard, G., Hoffart, V., Beyssac, E., Cardot, J. M., Alric, M., & Subirade, M. (2010). Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. Journal of Microencapsulation, 27(4), 292-302.
[26] Alkalbani, N. S., Osaili, T. M., Al-Nabulsi, A. A., Olaimat, A. N., Liu, S. Q., Shah, N. P., ... & Ayyash, M. M. (2022). Assessment of yeasts as potential probiotics: A review of gastrointestinal tract conditions and investigation methods. Journal of Fungi, 8(4), 365.
[27] Hatoum, R., Labrie, S., & Fliss, I. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, 421.
[28] Shruthi, B., Deepa, N., Somashekaraiah, R., Adithi, G., Divyashree, S., & Sreenivasa, M. Y. (2022). Exploring biotechnological and functional characteristics of probiotic yeasts: A review. Biotechnology Reports, 34, e00716.
[29] Saksinchai, S., Suzuki, M., Chantawannakul, P., Ohkuma, M., & Lumyong, S. (2012). A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. Fungal Diversity, 52, 123-139.
[30] Silva, M. S., Arruda, L. M., Xavier, P. L., Ramírez, M. X. D., da Silveira, F. A., Santana, W. C., ... & Eller, M. R. (2020). Selection of yeasts from bee products for alcoholic beverage production. Brazilian Journal of Microbiology, 51, 323-334.
[31] Echeverrigaray, S., Scariot, F. J., Foresti, L., Schwarz, L. V., Rocha, R. K. M., da Silva, G. P., ... & Delamare, A. P. L. (2021). Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. International Journal of Food Microbiology, 347, 109200.
[32] Ziuzia, P., Janiec, Z., Wróbel-Kwiatkowska, M., Lazar, Z., & Rakicka-Pustułka, M. (2023). Honey’s yeast—new source of valuable species for industrial applications. International Journal of Molecular Sciences, 24(9), 7889.
[33] Kahraman, T., Buyukunal, S. K., Vural, A., & Altunatmaz, S. S. (2010). Physico-chemical properties in honey from different regions of Turkey. Food Chemistry, 123(1), 41-44.
[34] Voidarou, C., Alexopoulos, A., Plessas, S., Karapanou, A., Mantzourani, I., Stavropoulou, E., Fotou, K., Tzora, A., Skoufos, I. & Bezirtzoglou, E. (2011). Antibacterial activity of different honeys against pathogenic bacteria. Anaerobe, 17(6), 375-379.
[35] Kanpiengjai, A., Khanongnuch, C., Lumyong, S., Kummasook, A., & Kittibunchakul, S. (2020). Characterization of Sporidiobolus ruineniae A45. 2 cultivated in tannin substrate for use as a potential multifunctional probiotic yeast in aquaculture. Journal of Fungi, 6(4), 378.
[36] Gut, A. M., Vasiljevic, T., Yeager, T., & Donkor, O. N. (2019). Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. Journal of Functional Foods, 58, 56-66.
[37] Chaffin, W. L., Lopez-Ribot, J. L., Casanova, M., Gozalbo, D., & Martinez, J. P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiology and Molecular Biology Reviews, 62(1), 130-180.
[38] Andrade, G. C., Andrade, R. P., Oliveira, D. R., Quintanilha, M. F., Martins, F. S., & Duarte, W. F. (2021). Kluyveromyces lactis and Torulaspora delbrueckii: Probiotic characterization, anti-Salmonella effect, and impact on cheese quality. LWT-Food Science and Technology, 151, 112240.
[39] Menezes, A. G. T., de Sousa Melo, D., Ramos, C. L., Moreira, S. I., Alves, E., & Schwan, R. F. (2020). Yeasts isolated from Brazilian fermented foods in the protection against infection by pathogenic food bacteria. Microbial Pathogenesis, 140, 103969.
[40] Coutinho, J. O., Peixoto, T. S., de Menezes, G. C., Carvalho, C. R., Ogaki, M. B., Gomes, E. C., Rosa, C.A., Rosa, L.H., Arantes, R.M., Nicoli, J.R., Tiago, F.C., & Martins, F. S. (2021). In vitro and in vivo evaluation of the probiotic potential of Antarctic yeasts. Probiotics and Antimicrobial Proteins, 13(5), 1338-1354.
[41] Simões, L. A., Cristina de Souza, A., Ferreira, I., Melo, D. S., Lopes, L. A. A., Magnani, M., Schwan, R.F., & Dias, D. R. (2021). Probiotic properties of yeasts isolated from Brazilian fermented table olives. Journal of Applied Microbiology, 131(4), 1983-1997.
[42] Nascimento, B. L., Delabeneta, M. F., Rosseto, L. R. B., Junges, D. S., Paris, A. P., Persel, C., & Gandra, R. F. (2020). Yeast mycocins: a great potential for application in health. FEMS Yeast Research, 20(3), foaa016.
[43] Menezes, A. G. T., Ramos, C. L., Cenzi, G., Melo, D. S., Dias, D. R., & Schwan, R. F. (2020). Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics and Antimicrobial Proteins, 12, 280-288.
[44] Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226, 1065-1073.
[45] Saito, K., Tomita, S., & Nakamura, T. (2019). Aggregation of Lactobacillus brevis associated with decrease in pH by glucose fermentation. Bioscience, Biotechnology, and Biochemistry, 83(8), 1523-1529.
[46] Díaz-Vergara, L., Pereyra, C. M., Montenegro, M., Pena, G. A., Aminahuel, C. A., & Cavaglieri, L. R. (2017). Encapsulated whey–native yeast Kluyveromyces marxianus as a feed additive for animal production. Food Additives & Contaminants: Part A, 34(5), 750-759.
[47] Stewart, G. G. (2018). Yeast flocculation—sedimentation and flotation. Fermentation, 4(2), 28.
[48] Diguță, C. F., Mihai, C., Toma, R. C., Cîmpeanu, C., & Matei, F. (2022). In vitro assessment of yeasts strains with probiotic attributes for aquaculture use. Foods, 12(1), 124.
[49] Wang, X., Li, W., Mahsa, G. C., Zhang, C., Ma, K., Rui, X., & Li, W. (2023). Co-cultivation effects of Lactobacillus helveticus SNA12 and Kluveromyces marxiensis GY1 on the probiotic properties, flavor, and digestion in fermented milk. Food Research International, 169, 112843.
[50] Falah, F., Vasiee, A., Behbahani, B. A., Yazdi, F. T., Moradi, S., Mortazavi, S. A., & Roshanak, S. (2019). Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microbial Pathogenesis, 131, 246-253.
[51] Fernández-Pacheco, P., Ramos Monge, I. M., Fernández-González, M., Poveda Colado, J. M., & Arévalo-Villena, M. (2021). Safety evaluation of yeasts with probiotic potential. Frontiers in Nutrition, 8, 659328.
[52] Qasim, Z. S. (2022). The Antimycotic activity of Rosuvastatin. Iraqi Journal of Pharmacy, 19(2), 84-92.
[53] Kanafani, Z. A., & Perfect, J. R. 2008. Resistance to antifungal agents: mechanisms and clinical impact. Clinical Infectious Diseases, 46(1), pp. 120-128
[54] Goretti, M., Turchetti, B., Buratta, M., Branda, E., Corazzi , l., Vaughan-Martini, A., Buzzini, P. 2009. In vitro antimycotic activity of a Williopsis saturnus killer protein against food spoilage yeasts. International Journal of Food Microbiology, 131(2-3), pp. 178-182.
[55] Cernicka, j., Kozovska, Z., Hnatova, M., Valachovic, m., Hapala, I., Riedl, Z., Hajos, G., Subik, J. 2007. Chemosensitisation of drug-resistant and drug-sensitive yeast cells to antifungals. International Journal of Antimicrobial Agents, 29(2), pp. 170-178.
[56] de Oliveira Coelho, B., Fiorda-Mello, F., de Melo Pereira, G. V., Thomaz-Soccol, V., Rakshit, S. K., de Carvalho, J. C., & Soccol, C. R. (2019). In vitro probiotic properties and DNA protection activity of yeast and lactic acid bacteria isolated from a honey-based kefir beverage. Foods, 8(10), 485.
[57] Hsiung, R. T., Fang, W. T., LePage, B. A., Hsu, S. A., Hsu, C. H., & Chou, J. Y. (2021). In vitro properties of potential probiotic indigenous yeasts originating from fermented food and beverages in Taiwan. Probiotics and Antimicrobial Proteins, 13, 113-124.
[58] Vesterlund, S., Vankerckhoven, V., Saxelin, M., Goossens, H., Salminen, S., & Ouwehand, A. C. (2007). Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. International Journal of Food Microbiology, 116(3), 325–331.
[59] Kia, S., Sadeghi, A., Kashaninejad, M., Khomeiri, M., & Zarali, M. (2023). Evaluation of probiotic properties of Lactobacillus brevis as the predominant LAB isolated from fermented amaranth. Journal of Food Science and Technology (Iran), 19(132), 65-76.
[60] Ruggirello, M., Nucera, D., Cannoni, M., Peraino, A., Rosso, F., Fontana, M., Cocolin, L., & Dolci, P. (2019). Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International, 115, 519-525.
[61] da Cunha, T., Ferraz, L. P., Wehr, P. P., & Kupper, K. C. (2018). Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum. International Journal of Food Microbiology, 276, 20-27.
[62] Kunyeit, L., Kurrey, N. K., Anu-Appaiah, K. A., & Rao, R. P. (2019). Probiotic yeasts inhibit virulence of non-albicans Candida species. Molecular Biology & Microbiology, 10(5), e02307-19.
[63] Dikmetas, D. N., Özer, H., & Karbancıoglu-Guler, F. (2023). Biocontrol potential of antagonistic yeasts on In Vitro and In Vivo Aspergillus Growth and Its AFB1 Production. Toxins, 15(6), 402.
[64] Gil-Rodríguez, A. M., & Garcia-Gutierrez, E. (2021). Antimicrobial mechanisms and applications of yeasts. Advances in Applied Microbiology, 114, 37–72.
[65] Purabdolah, H., Sadeghi, A., Ebrahimi, M., Kashaninejad, M., & Mohamadzadeh, J. (2022). Evaluation of probiotic and antifungal properties of the predominant LAB isolated from fermented acorn (Quercus persica). Journal of Food Science and Technology (Iran), 19(124), 171-183.
[66] Rahimi, D., Sadeghi, A., Kashaninejad, M., & Ebrahimi, M. (2024). Postbiotic characterization of a potential probiotic yeast isolate, and its microencapsulation in alginate beads coated layer-by-layer with chitosan. Heliyon, 10(7).