مدل‌سازی اثر پیش‌تیمار مایکروویو براستخراج روغن از دانه‌های گوجه‌فرنگی به روش شبکه عصبی مصنوعی

نویسندگان
گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران
چکیده
افزایش تقاضای مصرف‌کنندگان برای استفاده از مواد غذایی طبیعی و بدون افزودنی و همچنین افزایش ضایعات صنایع غذایی، محرک استفاده از محصولات جانبی کارخانه­های مواد غذایی در دیگر صنایع غذایی است. تفاله گوجه‌فرنگی ازجمله ضایعات کارخانه­های مواد غذایی است که در کارخانه­های تولید رب و سس از گوجه­فرنگی تولید می‌شود. هدف از این پژوهش بررسی اثر پیش­تیمار مایکروویو و روش استخراج بر ویژگی­های فیزیکی و شیمیایی روغن دانه ­گوجه­فرنگی بود. پیش­تیمار دانه­ها با امواج مایکرویوو (0، 200 و 500 وات) طی زمان­های مختلف (0، 1، 3 و 5 دقیقه) انجام و روغن دانه­ها با روش سوکسله و پرس استخراج گردید. برخی ویژگی­های فیزیکی و شیمیایی روغن استحصالی شامل بازده استخراج، ویسکوزیته، عدد اسیدی، عدد پراکسید، و مؤلفه‌های رنگی شامل روشنایی، قرمزی و زردی ارزیابی گردید. تجزیه و تحلیل داده‌ها بر اساس آزمایش فاکتوریل در قالب طرح آماری کاملاً تصادفی در سه تکرار انجام شد. داده‌های آزمایشگاهی این پژوهش توسط روش الگوریتم ژنتیک- شبکه عصبی مصنوعی با 3 ورودی (روش استخراج، توان مایکروویو و زمان تیماردهی) و 7 خروجی (درصد استخراج، عدد اسیدی، عدد پراکسید، ویسکوزیته، روشنایی، قرمزی و زردی) مدل‌سازی شد. نتایج مدل‌سازی به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی نشان داد شبکه‌ای با ساختار 7-8-3 در یک لایه پنهان و با استفاده از تابع فعال‌سازی تانژانت هیپربولیک می‌تواند درصد استخراج، عدد اسیدی، عدد پراکسید، ویسکوزیته، روشنایی، قرمزی و زردی روغن تهیه‌شده از دانه‌های گوجه‌فرنگی را با ضریب همبستگی بالا و مقدار خطا پایین پیش‌بینی نماید. بر اساس نتایج آزمون آنالیز حساسیت، روش استخراج در مقایسه توان و زمان پیش‌تیمار دانه­ها با مایکرویوو، به‌عنوان عامل اصلی تعیین گردید
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling of microwave pretreatment effect on the oil extraction from tomato seeds by artificial neural network method

نویسندگان English

Zahra Mamivand
Aryou Emamifar
Fakhreddin Salehi
Mostafa Karami
Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, 65178-38695, Iran
چکیده English

Increasing consumers demand for natural and additive-free foods and high volumes of food industry wastes, are stimulating the use of these resources in other food industries. Tomato pomace is one of the food factory wastes is the resulting by-product of tomato paste and sauce factories. The aim of this study was to evaluate the effect extraction method and microwave pretreatment of tomato seeds on the physicochemical characteristics of their extracted oil. The seeds were treated with microwaves using various power levels (0, 200 and 500 W) and different process times (0, 1, 3 and 5 min) and their oil was extracted by Soxhlet and press methods. Fatty acids composition of oils was determined by gas chromatography. Some physicochemical characteristics of extracted seed oil including oil yield, viscosity, acid value, peroxide value, and color index (L, b, a values) were evaluated. Data was analyzed with factorial treatment structure in a Completely Randomized Design in three replications. The experimental data was modeled by artificial neural network with 3 inputs (extraction method, microwave power and pretreatment time) and 7 outputs (oil yield, acid value, peroxide value, viscosity, L value, b value and a value). The results of artificial neural network modeling showed that the network with a 3-8-7 structure and using the Hyperbolic tangent activation function can predict the oil yield, acid value, peroxide value, viscosity, L value, b value and a value of tomato seed oil with high correlation coefficient and low error. Based on the results of the sensitivity analysis, the extraction method compared to the power and time of microwave assisted pretreatment of seeds was determined as the main factor.

کلیدواژه‌ها English

artificial neural network
Sensitivity Analysis
Tomato seed oil
Microwave
[1] Kumar, K., Yadav, A.N., Kumar, V., Vyas, P., & Dhaliwal, H. S. (2017). Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing, 4, 18 https://doi.org/10.1186/s40643-017-0148-6.
[2] Aksoylu Özbek, Z. A., Çelik, K., Ergönül, P. G., & Hepçimen, A. Z. (2020). A promising food waste for food fortification: characterization of dried tomato pomace and its cold pressed oil. The Journal of Chemistry and Nanotechnology, https://doi.org/10.17756/jfcn.2020-078.
[3] Sangeetha, K., Ramyaa, R. B., Khaneghah, A. M. & Radhakrishnan, M. (2023). Extraction, characterization, and application of tomato seed oil in the food industry: An updated review. Journal of Agriculture and Food Research, 11, 100529. https://doi.org/10.1016/j.jafr.2023.100529.
[4] Mechmeche, M., Ksontini, H., Hamdi, M. et al. (2018). Impact of the addition of tomato seed oil on physicochemical characteristics, antioxidant activity and microbiological quality of dried tomato slices. Journal of Food Measurement and Characterization, 12, 1378–1390. https://doi.org/10.1007/s11694-018-9752-1.
[5] Botineştean, C., Hădărugă, N.G., Hădărugă, D. I. & Jianu, I. (2012). Fatty acids composition by gas chromatography –mass spectrometry (GC-MS) and most important physical chemicals parameters of tomato seed oil. Journal of Agroalimentary Processes and Technologies, 18(1), 89-94.
[6] Prescha, F. A, Grajzer M, Dedyk M & Grajeta H. (2014). The antioxidant activity and oxidative stability of cold-pressed oils. Journal of the American Oil Chemists' Society, 9(8), 1291-1301.
[7] Bakhshabadi, H., Mirzaei, H.A., Ghodsvali, A.R. Jafari, S.M. & Ziaiefar, A.M. (2018). Modeling of the some selected chemical properties of black Cumin seeds’ oil influenced by microwave pretreatment and screw rotational speed. Iranian Food Science and Technology Research Journal, 14(1), 17-26. [in Persian] https://doi.org/10.22067/ifstrj.v1395i0.57722
[8] Walayat, N., Yurdunuseven-Yıldız, A., Kumar, M., Goksen, G., Öztekin, S., & Lorenzo, J. M. (2023). Oxidative stability, quality, and bioactive compounds of oils obtained by ultrasound and microwave-assisted oil extraction. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2023.2219452.
[9] Suri, K., Singh, B., & Kaur, A. (2022). Impact of microwave roasting on physicochemical properties, maillard reaction products, antioxidant activity and oxidative stability of nigella seed (Nigella sativa L.) oil. Food chemistry, 368, 130777. https://doi.org/10.1016/j.foodchem.2021.130777.
[10] Mandal, V., Mohan, Y. & Hemalatha, S. (2007). Microwave assisted extraction – an innovative & promising extraction tool for medicinal plant research. Pharmacognosy Reviews 1, 8-14.
[11] Sablani, S. S., Shafiur Rahman, M., Datta, A. K., & Mujumdar, A. S. (2007). Handbook of food and bioprocess modeling technology. CRC press. P 378-380.
[12] Bhagya Raj, G. V. S., & Dash, K. K. (2022). Comprehensive study on applications of artificial neural network in food process modeling. Critical reviews in food science and nutrition, 62(10), 2756–2783. https://doi.org/10.1080/10408398.2020.1858398.
[13] Karami, H., Nejat Lorestani, A. & Tahvilian, R. (2021). The effect of different drying methods on drying kinetics, mathematical modeling, quantity and quality of thyme essential oil. Journal of Food Science and Technology (Iran) 18(113), 135-146. [In Persian].
[14] Salehi, F. (2020). Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review. International Journal of Fruit Science, 20(3), 506-520.
[15] Bakhshabadi, H., Vahdani, M., Moghimi, M., Bazrafshan, M., Rashidzadeh, Sh., & Bojmehrani, A. (2017). Modeling the cooking process during the extraction of oil from sunflower seeds using artificial neural networks on an industrial scale. Journal of Food Science and Technology (Iran),70 (14), 113-122. [In Persian].
[16] Zuorro, A., Lavecchia, R., Medici, F. & Piga, L. (2013). Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato pomace. Food and Bioprocess Technology, 6, 3499–3509. https://doi.org/10.1007/s11947-012-1003-6.
[17] Kaseke, T., Opara, U. L., & Fawole, O. A. (2020). Effect of microwave pretreatment of seeds on the quality and antioxidant capacity of pomegranate seed oil. Foods, 9(9): 1287. https://doi.org/10.3390/foods9091287.
[18] Yilmaz, E., & Güneşer, B. A. (2017). Cold pressed versus solvent extracted lemon (Citrus limon L.) seed oils: yield and properties. Journal of Food Science and Technology, 54(7), 1891–1900.
[19] AACC Approved Methods of Analysis, 11th Ed. Cereals & Grains Association, St. Paul, MN, U.S.A. http://dx.doi.org/10.1094/AACCIntMethod-02-03.02.
[20] Kabutey A, Herák D & Mizera Č. (2023). Assessment of quality and efficiency of cold-pressed oil from selected oilseeds. Foods, 12, 3636.
[21] AOAC. (18th ed.). AOAC International; 2005. Official Methods of Analysis of AOAC International.
[22] Benkai, L., Changhe, L., Yanbin, Z., Yaogang, W., Dongzhou, J. & Min, Y. (2016). Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chinese Journal of Aeronautics, 29 (4), 1084-1095.
[23] Yeganeh, P., Emamifar, A., Karami, M., & Salehi, F. (2024). Investigation on replacing egg with soy flour and Psyllium seed gum in gluten-free rice cake. Journal of Food Science and Technology (Iran), 20 (143), 62-77.
[24] Satorabi, M., Salehi, F. & Rasouli, M. (2021). The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling. International Journal of Fruit Science, 21(1), 468-480.
[25] Onwude, D.I., Hashim, N., Janius, R.B., Nawi, N. & Abdan, K. (2016). Modelling the convective drying process of pumpkin (Cucurbita moschata) using an artificial neural network. International Food Research Journal, 23, S237.
[26] Sánchez, R. J., Fernández, M.B., & Nolasco, S.M. (2017). Artificial neural network model for the kinetics of canola oil extraction for different seed samples and pretreatments. Journal of Food Process Engineering, 41, e12608. https://doi.org/10.1111/jfpe.12608
[27] Karami, P., Zandi, M., & Ganjloo, A. (2022). Mathematical, fuzzy logic and artificial neural network modeling of extraction kinetics of essential oil from aerial parts of yarrow (Achillea millefolium L.) using ohmic-assisted hydrodistillation. Food Science and Technology (Iran), 19 (123), 341-354. [In Persian].
[28] Lužaić, T., Romanić, R., Grahovac, N., Jocić, S., Cvejić, S., Hladni, N., & Pezo, L. (2021), Prediction of mechanical extraction oil yield of new sunflower hybrids: artificial neural network model. The Journal of the Science of Food and Agriculture, 101, 5827-5833. https://doi.org/10.1002/jsfa.11234.
[29] Suryawanshi, B., & Mohanty, B. (2018). Application of an artificial neural network model for the supercritical fluid extraction of seed oil from Argemone mexicana (L.) seeds. Industrial Crops and Products, 123, 64-74. https://doi.org/10.1016/j.indcrop.2018.06.057.
[30] Moghimi, M., Bakhshabadi, H., & Bazrafshan, M. (2017). Modeling of oil Extraction from Flaxseed by Using Microwave Pretreatment with Artificial Neural Network. Research and Innovation in Food Science and Technology, 6(2), 199-210. doi: 10.22101/JRIFST.2017.09.02.627.
[31] Ghorbani, M., Naghipour, L., Karimi, V. & Farhoudi, R. (2013). Sensitivity analysis of the effective input parameters upon the ozone concentration using artificial neural networks. Iranian Journal of Health and Environment, 6(1), 11-22. [In Persian].
[32] Tzuc, O. M., Bassam, A., Ricalde, L.J., & May, E. C. (2019). Chapter 10 - Sensitivity Analysis with Artificial Neural Networks for Operation of Photovoltaic Systems, Editor(s): Alma Y. Alanis, Nancy Arana-Daniel, Carlos López-Franco, Artificial Neural Networks for Engineering Applications, Academic Press, 127-138. https://doi.org/10.1016/B978-0-12-818247-5.00019-8
[33] Asnaashari, M., Farhoosh, R., & Sharif, A. (2014). Evaluation of the methyl gallate effect on oxidation kinetic of purified kilka fish oil using sensitivity analysis based on artificial neural networks modeling. Food Research Journal, 24, 3, 473-485. [In Persian]