جزءبه‌جزءسازی دو مرحله‌ای چربی‌ دنبه گوسفندی و شترمرغ به روش خشک و بررسی خصوصیات فیزیکوشیمیایی اجزای آن

نویسندگان
دانشگاه صنعتی اصفهان
چکیده
در کشور ایران ظرفیت زیادی برای تولید چربی حیوانی وجود دارد که کمتر در تولید محصولات غذایی مورد استفاده قرار گرفته است. در این مطالعه، چربی حاصل از بافت دنبه گوسفندی و بافت شکمی شترمرغ به‌عنوان ضایعات حاصل از کشتارگاه مورد بررسی قرار گرفت. به این منظور، در مرحله اول چربی به روش حرارت‌دهی مرطوب استخراج شد و ترکیب شیمیایی آن مورد بررسی قرار گرفت. در مرحله دوم، چربی به روش جزءبه‌جزءسازی خشک به دو بخش استئارین و اولئین تقسیم شد و سپس جزء اولئین مجددا با این روش به دو بخش استئارین نرم و سوپر اولئین جداسازی و ترکیب اسید چرب و خصوصیات فیزیکوشیمیایی آن‌ها اندازه‌گیری شد. بافت دنبه و شترمرغ به ترتیب حاوی 66/10% و 18/5% رطوبت، 10/4% و 29/4% پروتئین، 26/0% و 62/0% خاکستر و 93/84% و35/88% چربی بودند و راندمان استخراج چربی از این بافت‌ها به ترتیب 1/44% و 8/70% بدست آمد. نتایج کروماتوگرافی گازی نشان داد اسیدهای اولئیک، پالمتیک و استئاریک اسیدهای چرب اصلی تشکیل دهنده چربی دنبه و اسیدهای اولئیک، پالمتیک، پالمیتولئیک و لینولئیک اسیدهای چرب غالب در ساختار چربی شترمرغ بودند. پس از فرایند جزءبه‌جزءسازی با افزایش محتوای اولئیک اسید در بخش‌های اولئین و سوپر اولئین در هر دو نوع چربی، مقادیر عدد یدی و ضریب شکست افزایش و خصوصیات نقطه ذوب و شاخص L* کاهش یافت. عدد پراکسید چربی دنبه 54/1 میلی‌اکی والان اکسیژن در کیلوگرم روغن بود و فرایند جزءبه‌جزءسازی اثر معناداری بر آن نداشت، اگرچه عدد پراکسید چربی شترمرغ پس از فرایند جزءبه‌جزسازی به طور چشمگیری افزایش یافت. به طور کلی، می‌توان نتیجه‌گیری کرد چربی استخراجی به روش حرارت‌دهی مرطوب از دنبه گوسفندی و شترمرغ و اجزای آن‌ها دارای کیفیت قابل قبول برای مصارف خوراکی است و می‌توان از بخش‌های استئارین و استئارین نرم این چربی‌ها به‌عنوان جایگزین فرایند هیدروژناسیون برای تولید چربی نیمه جامد در محصولات غذایی استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Two-stage dry fractionation of sheep tail and ostrich fats and evaluation of physicochemical properties of their fractions

نویسندگان English

Maryam Abdollahi
Amir Goli
Nafiseh Soltanizadeh
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156 83111 Isfahan, Iran
چکیده English

In Iran, there is a large capacity for animal fat production, which is less used in food products. In this study, the fat obtained from sheep tail and ostrich abdominal tissue were investigated as waste from the slaughterhouse. For this purpose, in the first step, fats were extracted by wet rendering method and their chemical compositions were analyzed. In the second step, the fat was separated into two parts, stearin and olein, by dry fractionation. Then, the olein fraction was divided into two parts, soft stearin and superolein, and their fatty acid composition and physicochemical properties were measured. The sheep tail and ostrich tissues contained 10.66% and 5.18% moisture, 4.10% and 4.29% protein, 0.26% and 0.62% ash, and 84.93% and 88.35% fat, respectively, and the extraction yield were obtained 37.42% and 62.56%, respectively. The gas chromatography results showed that oleic acid, palmitic acid and stearic acid were the main fatty acids in sheep tail fat and oleic acid, palmitic acid, palmitoleic acid and linoleic acid were dominant in the fatty acid profile of ostrich fat. After fractionation, an increase in oleic content of olein and superolein in both fats increased iodine value and refractive index followed by decreasing melting point and L*. Peroxide value of sheep tail fat was 1.54 meqO2/ kg and the fractionation process had no significant effect on it, however, the peroxide value of ostrich fat increased significantly after the separation (p<0.05), which could be due to the presence of a considerable portion of linoleic in this fat. Therefore, it can be concluded that the fat extracted by wet rendering from sheep tail and ostrich tissues has an acceptable quality for edible use, and their stearin and soft stearin fractions can be used as an alternative to the hydrogenation process to produce semi-solid fat in food products.

کلیدواژه‌ها English

Sheep tail fat
Ostrich fat
Fractionation
Fatty acid composition
[1] Yılmaz, M. and Karakaya, M. 2010. Thermal analysis of lipids isolated from various tissues of sheep fats. Journal of Thermal Analysis and Calorimetry, 101(1): 403-409.
[2] Doosti, A., Jafarinaimi, K., Balvardi, M. and Mortezapour, H. 2020. Ultrasound-assisted deodorization of sheep tail fat and evaluation of odor intensity using electronic nose and sensorial analysis. Journal of Food Science and Technology, 17(98): 13-25.
[3] Pehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S. and Sagdic, O. 2018. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 58(8): 1330-1341.
[4] Li, J., Guo, R., Wang, M., Bi, Y., Zhang, H. and Xu, X. 2022. Development and characterization of compound oleogels based on monoglycerides and edible waxes. ACS Food Science and Technology, 2(2): 302-314.
[5] Doosti, A., Jafarinaimi, K., Balvardi, M. and Mortezapour, H. 2021. Parameters optimization of ultrasound-assisted deodorization of sheep tail fat using response surface technique. Iranian Journal of Chemistry and Chemical Engineering, 40(3): 815-831.
[6] Li, Y., Li, Y. B. and Liu, C. J. 2017. Changes in lipid oxidation and fatty acids in Altay sheep fat during a long time of low temperature storage. Journal of Oleo Science, 66(4): 321-327.
[7] Elhamirad, A. H., Izi, M. and Armin, M. 2011. Extracting the liquid phase of sheep tail fat by solvent fractionation method and comparing the composition of its fatty acids with some commercial samples of liquid oil. Scientific and Research Journal of Food Science and Technology, 3(3): 51-59.
[8] Hou, C., Wang, Z., Zhao, M., Tian, X., Shen, Q. and Zhang, D. 2020. Characterization of sheep tail fat dry fractionation at the pilot scale. International Journal of Food Engineering, 17(4): 319-325.
[9] Kowalska, M., Żbikowska, A. and Kowalski, B. 2014. Enzymatically modified fats based on mutton tallow and rapeseed oil suitable for fatty emulsions. Journal of the American Oil Chemists' Society, 91(10): 1703-1710.
[10] Xu, C., Zhang, L., He, H., Liu, X., Pei, X., Ma, T., Ma, B., Lin, W. and Zhang, B., 2022. Sheep tail fat inhibits the proliferation of non-small-cell lung cancer cells in vitro and in vivo. Frontiers in Pharmacology, 13: 1-10.
[11] Şişik Oğraş, Ş., Akköse, A., Kaban, G. and Kaya, M. 2018. Volatile profile and fatty acid composition of kavurma (a cooked uncured meat product) produced with animal fat combinations. International Journal of Food Properties, 21(1): 364-373.
[12] Liu, X., Wang, F., Liu, X., Chen, Y. and Wang, L. 2011. Fatty acid composition and physicochemical properties of ostrich fat extracted by supercritical fluid extraction. European Journal of Lipid Science and Technology, 113(6): 775-779.
[13] Amany, M., Shaker, M. and Shereen, L. 2011. Utilization of ostrich oil in foods. International Research Journal of Biochemistry and Bioinformatics, 2: 199-208.
[14] Belichovska, D., Hajrulai-Musliu, Z., Uzunov, R., Belichovska, K. and Arapcheska, M., 2015. Fatty acid composition of ostrich (Struthio camelus) abdominal adipose tissue. Macedonian Veterinary Review, 38(1): 53-59.
[15] Dehghani Askezari, N., Gharachorloo, M. and Ghasemi Afshar, P. 2022. Physical and chemical properties of oils extracted from fat tissues of ostrich (Canadian black neck breed). Journal of Food Research, 32(2): 43-57.
[16] Ponphaiboon, J., Limmatvapirat, S., Chaidedgumjorn, A. and Limmatvapirat, C. 2018. Physicochemical property, fatty acid composition, and antioxidant activity of ostrich oils using different rendering methods. LWT, 93: 45-50.
[17] Al-Baidhani, A. and Al-Mossawi, A. 2019. The study of chemical content and physicochemical properties of ostrich (Struthio camelus) fat (local). in IOP Conference Series: Earth and Environmental Science, 388: 012055.
[18] Ghanei, F. 2020. Investigating the chemical structure and oxidative stability of ostrich oil as a new food source. M.Sc. thesis. College of Agriculture, Jahrom University of Technology.
[19] Senanayake, S. P. J. N. and Shahidi, F. 2020. Modification of Fats and Oils via Chemical and Enzymatic Methods. In: Bailey's Industrial Oil and Fat Products. Shahidi, F. (Ed.). John Wiley & Sons, Ltd. Hoboken, New Jersey. pp. 1-29.
[20] Basuny, A., Arafat, S. and Soliman, H. 2017. Biological evaluation of ostrich oil and its using for production of biscuit. Egyptian Journal of Chemistry, 60(6): 1091-1099.
[21] Pudtikajorn, K. and Benjakul, S. 2020. Simple wet rendering method for extraction of prime quality oil from skipjack tuna eyeballs. European Journal of Lipid Science and Technology, 122(8): 2000077.
[22] Richards, M. P., Olson, J. M. and Haas, M. J. 2020. Animal Fats. In: Bailey's Industrial Oil and Fat Products. Shahidi, F. (Ed.). John Wiley & Sons, Ltd. Hoboken, New Jersey. pp. 1-49.
[23] Dalvi Isfahan, M. and Daraei Garmekhani, A. 2011. Qualitative evaluation of ostrich oil (Struthio camelus) for use in cosmetic and food products. Journal of Food Research, 21(4): 431-441.
[24] Simanpoor, M., Gharachorloo, M. and Fahimdanesh, M. 2012. Investigation of cholesterol distribution in different fractions of sheep tail fat. Food Technology and Nutrition, 9(3): 21-30.
[25] Belitz, H. D., Grosch, W., and Schieberle, P. 2009. Edible fats and oils. In: Food Chemistry. Belitz, H. D., Grosch, W., and Schieberle, P. (Eds.). Springer, Berlin, Heidelberg. pp. 640-669.
[26] Rezaei, F., Gharachorloo, M., and Azizinejad, R. 2013. Fractionation of Iranian beef tallow-chemical and physical evaluations of the fractions. Journal of Food Bioscience and Technology, 3: 37-40.