مقایسه پایداری فرم نانولیپوزومی اسانس های پوست بالنگ به دست آمده از روش های مختلف استخراج در طول دوره نگهداری در دمای 4 و 18- درجه سانتی گراد

نویسندگان
1 دانشجوی دکتری گروه ﻋﻠﻮم و ﺻﻨﺎیﻊ ﻏﺬایی دانشگاه ﻋﻠﻮم کشاورزی و ﻣﻨﺎﺑﻊ طبیعی ﺳﺎری
2 اﺳﺘﺎد گروه ﻋﻠﻮم و ﺻﻨﺎیﻊ ﻏﺬایی دانشگاه ﻋﻠﻮم کشاورزی و ﻣﻨﺎﺑﻊ طبیعی ﺳﺎری
3 داﻧﺸﯿﺎر ﻣﺮکز ﺗﺤﻘﯿﻘﺎت ﻧﺎﻧﻮتکنولوژی و کاﺗﺎﻟﯿﺴﺖ، اﻧﺴﺘﯿﺘﻮی ﻣﻄﺎﻟﻌﺎت پیشرفته، دانشگاه ﻣﺎﻻیﺎ، کوالالامپور، ﻣﺎﻟﺰی
چکیده
یکی از روش های مهم برای حفظ پایداری و خصوصیات عملکردی اسانس های گیاهی به عنوان یک منبع مفید ترکیبات زیست فعال در مقابل آسیب های محیطی، درون پوشانی آن ها در سیستم های نانوحامل مانند نانولیپوزوم است. در این مطالعه نانولیپوزوم حاوی اسانس پوست بالنگ بدون استفاده از حلال آلی سمی و با به کار بردن ترکیبات سلامتی بخش مانند روغن کنجد علاوه بر لسیتین برای اولین بار در فرمولاسیون تهیه شدند. میزان پایداری نمونه ها در طول 30 روز نگهداری در دماهای ºC4 و ºC18-، با بررسی مقدار ماندگاری ترکیبات فنولی، تغییرات pH، عملکرد آنتی اکسیدانی و ضد میکروبی تعیین گردید. نمونه های نانولیپوزومی اسانس های تقطیر با آب و کربن دی اکسید فوق بحرانی پوست بالنگ تهیه شده با غلظت های مختلف لسیتین- روغن دارای مقدار متفاوت pH و درصد ماندگاری فنول بودند و میزان آن ها با افزایش مدت زمان نگهداری در هر دو دمای آزمون کاهش یافت. توانایی مهارکنندگی DPPH و فعالیت ضد میکروبی هر دو نوع اسانس پوست بالنگ بعد از درون پوشانی در نانولیپوزوم بهبود یافت. اما مقدار آن ها در هر دو دمای نگهداری با گذشت زمان کاهش یافت. نانولیپوزوم اسانس سیال فوق بحرانی پوست بالنگ به ترتیب با فرمولاسیون حاوی بالاترین و پایین ترین مقدار لسیتین- روغن در دمای نگهداری ºCبهترین نتیجه را در این مطالعه نشان دادند. بنابراین اسانس پوست بالنگ می تواند با درون پوشانی در سیستم نانولیپوزوم تهیه شده از لیستین- روغن کنجد به دلیل بهبود فعالیت آنتی اکسیدانی و ضدمیکروبی و پایداری بالاتر آن در مقابل دمای نگهداری، به عنوان افزودنی عملگرای طبیعی موثر در صنایع غذایی مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of the stability of the nanoliposome form of the citron (Citrus medica L.) peel essential oils obtained from different extraction methods during the storage period at 4ºC and -18ºC

نویسندگان English

Forough Gilani 1
Zeynab Raftani Amiri 2
Reza Esmaeilzadeh kenari 2
Nader Ghaffari Khaligh 3
1 Professor, Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University
2 Professor, Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 Associate Professor, Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
چکیده English

One of the critical methods to maintain the stability and functional properties of plant essential oils as a useful source of bioactive compounds against environmental damage is their encapsulation in nanocarrier systems such as nanoliposomes. In this study, nanoliposome containing the citron peel essential oils were prepared without the use of toxic organic solvent and by employing health-giving compounds such as sesame oil in addition to lecithin for the first time in the formulation. The stability of the samples during 30 days of storage at temperatures of 4ºC and -18ºC was determined by investigating the retention amount of phenolic compounds, pH changes, antioxidant and antimicrobial performance. The nanoliposomal samples of essential oils of hydrodistillation and supercritical CO2 of citron peel prepared with different concentrations of lecithin oil had different quantities of pH and phenol retention percentage, and their amount reduced with increasing storage time at both test temperatures. DPPH inhibitory ability and antimicrobial activity of both citron peel essential oils were improved after encapsulation in nanoliposome. But their amount in both storage temperatures decreased with the advancing of time. The nanoliposome of the supercritical fluid essential oil of citron peel respectively with the formulation containing the highest and lowest amount of lecithin oil at the storage temperature of 4ºC showed the best result in this study. Therefore, the citron peel essential oil with encapsulation in the nanoliposome system prepared from lecithin-sesame oil, due to improvement of antioxidant and antimicrobial activity and its higher stability against storage temperature, can be used as an effective natural functional additive in the food industry.




کلیدواژه‌ها English

Citron peel essential oil
Nanoliposome formulation
Antioxidant activity
Antimicrobial performance
Storage temperature
[1] Vahidi, R., Pourahmad, R., and Mahmoudi, R. (2019). Chemical compounds and antibacterial and antioxidant properties of citron (citrus medica L.) peel essential oil. Journal of Food and Bioprocess Engineering, 2(1), 71–76.
[2] Okhli, S., Mirzaei, H., and Hosseini, S.E. (2020). Antioxidant activity of citron peel (Citrus medica L.) essential oil and extract on stabilization of sunflower oil. OCL - Oilseeds and fats, Crops and Lipids, 27, 1–7.
[3] Khalil, W.K.B., El-Bassyouni, G.T., and Booles, H.F. (2016). Nano-encapsulated form of citrus medica for osteoporosis treatment in animal model. International Journal of Pharmaceutical and Clinical Research, 8(1), 49–59.
[4] Wang, F., You, H., Guo, Y., Wei, Y., Xia, P., Yang, Z., Ren, M., Guo, H., Han, R., and Yang, D. (2020). Essential oils from three kinds of fingered citrons and their antibacterial activities. Industrial Crops & Products, 147, 1–8.
[5] Gilani, F., Raftani Amiri, Z., Esmaeilzadeh Kenari, R., and Ghaffari Khaligh, N. (2023). Investigation of extraction yield, chemical composition, bioactive compounds, antioxidant and antimicrobial characteristics of citron (Citrus medica L.) peel essential oils produced by hydrodistillation and supercritical carbon dioxide. Journal of Food Measurement and Characterization, 1–13.
[6] Li, Z.H., Cai, M., Liu, Y.S., Sun, P.L., and Luo, S.L. (2019). Antibacterial activity and mechanisms of essential oil from citrus medica L. var. sarcodactylis. Molecules, 24, 1–10.
[7] Gabriele, B., Fazio, A., Dugo, P., Costa, R., and Mondello, L. (2009). Essential oil composition of citrus medica L. cv. Diamante (Diamante citron) determined after using different extraction methods. Journal of Separation Science, 32(1), 99–108.
[8] Hasani, S.H., Ojagh, S.M., Ghorbani, M., and Hasani, M. (2020). Nano-encapsulation of lemon essential oil approach to reducing the oxidation process in fish burger during refrigerated storage. Journal of Food Biosciences and Technology, 10(1), 35-46.
[9] Faraji, Z., Shakarami, J., Varshosaz, J., and Jafari, S. (2020). Encapsulation of essential oils of mentha pulegium and ferula gummosa using nanoliposome technology as a safe botanical pesticide. Journal of Applied Biotechnology Reports, 7(4), 237–242.
[10] Rafiee, Z., Barzegar, M., Sahari, M.A., and Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115-122.
[11] Dehghan, B., Esmaeilzadeh Kenari, R., and Raftani Amiri, Z. (2020). Nano-encapsulation of orange peel essential oil in native gums (Lepidium sativum and Lepidium perfoliatum): Improving oxidative stability of soybean oil. Journal of Food Processing and Preservation, 44(11), 1-8.
[12] Zabihi, A., Akhondzadeh Basti, A., Amoabediny, G., Khanjari, A., Tavakkoly Bazzaz, J., Mohammadkhan, F., Hajjar Bargh, A., and Vanaki, E. (2017). Physicochemical characteristics of nanoliposome garlic (Allium sativum L.) essential oil and its antibacterial effect on Escherichia coli O157:H7. Journal of Food Quality and Hazards Control, 4, 24-28.
[13] Pan, L., Zhang, S., Gu, K., and Zhang, N. (2018). Preparation of astaxanthin-loaded liposomes: characterization, storage stability and antioxidant activity. CyTA- Journal of Food, 16(1), 607–618.
[14] Tai, K., Liu, F., He, X., Ma, P., Mao, L., Gao, Y., and Yuan, F. (2018). The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: Stability, structure and membrane characteristics. Food Research International, 109, 24-34.
[15] Anderson, M., and Omri, A. (2004). The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Delivery, 11(1), 33-39.
[16] Stark, B., Pabst, G., and Prassl, R. (2010). Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: effects of cryoprotectants on structure. European Journal of Pharmaceutical Sciences, 41, 546-555.
[17] Yang, E., Yu, H., Choi, S., Park, K.M., Jung, H.S., and Chang, P.S. (2021). Controlled rate slow freezing with lyoprotective agent to retain the integrity of lipid nanovesicles during lyophilization. Scientific Reports, 1-12.
[18] Gorjian, H., Raftani Amiri, Z., Mohammadzadeh Milani, J., and Ghaffari Khaligh, N. (2021). Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: a comparative study. Food Chemistry, 1–11.
[19] Roostaee, M., Barzegar, M., Sahari, M.A., and Rafiee, Z. (2017). The enhancement of pistachio green hull extract functionality via nanoliposomal formulation: studying in soybean oil. Journal of Food Science and Technology, 54(11): 3620–3629.
[20] Alexander, M., Acero Lopez, A., Fang, Y., and Corredig, M. (2012). Incorporation of phytosterols in soy phospholipids nanoliposomes: encapsulation efficiency and stability. LWT - Food Science and Technology, 47(2), 427–436.
[21] Pathak, N., Rai, A.K., Kumari, R., and Bhat, K.V. (2014). Value addition in sesame: a perspective on bioactive components for enhancing utility and profitability. Pharmacognosy Reviews, 8(16): 147–155.
[22] Prasad, N., Sanjay, K.R., Prasad, D.S., Vijay, N., Kothari, R., and Shivananju, N.S. (2012). A review on nutritional and nutraceutical properties of sesame. Journal of Nutrition & Food Sciences, 2(2), 1-6.
[23] Rasti, B., Jinap, S., Mozafari, M.R., and Yazid, A.M. (2012). Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and mozafari methods. Food Chemistry, 135, 2761–2770.
[24] Ghorbanzade, T., Jafari, S.M., Akhavan, S., and Hadavi, R. (2016). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 1–25.
[25] Sarabandi, K., Jafaria, S.M., Mohammadi, M., Akbarbaglu, Z., Pezeshki, A., and Khakbaz Heshmati, M. (2019). Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization. Food Hydrocolloids, 96, 442–450.
[26] Mazloomi, S.N., Sadeghi Mahoonak, A., Ghorbani, M., and Houshmand, G. (2020). Physicochemical properties of chitosan-coated nanoliposome loaded with orange seed protein hydrolysate. Journal of Food Engineering, 280, 1-9.
[27] Sayyari, Z., Rabbani, M., Farahmandfar, R., Esmaeilzadeh Kenari, R., and Mousavi Nadoushan, R. (2021). Investigation of the effect of essential oil along with nanocoatings containing gums in the development of fish fillet storage time. Journal of Food Measurement and Characterization, 15, 3539–3552.
[28] Rodriguez, E.B., Almeda, R.A., Vidallon, M.L.P., and Reyes, C.T. (2018). Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. Journal of the Science of Food and Agriculture, 99(4), 1980–1989.
[29] Gorjian, H., Raftani Amiri, Z., Mohammadzadeh Milani, J., and Ghaffari Khaligh, N. (2022). Influence of Nanovesicle Type, Nanoliposome and Nanoniosome, on Antioxidant and Antimicrobial Activities of Encapsulated Myrtle extract: a comparative study. Food and Bioprocess Technology, 15, 144–164.
[30] Khatib, N., Varidi, M.J., Mohebbi, M., Varidi M., and Hosseini, S.M.H. (2019). Co‐encapsulation of lupulon and xanthohumol in lecithin‐based nanoliposomes developed by sonication method. Journal of food processing and preservation, 43(9), 1–11.
[31] Rezaei Erami, S., Raftani Amiri, Z., Jafari, S.M. (2019). Nanoliposomal encapsulation of Bitter Gourd (Momordica charantia) fruit extract as a rich source of health-promoting bioactive compounds. LWT - Food Science and Technology, 116, 1–7.
[32] Savaghebi, D., Barzegar M., and Mozafari, M.R. (2019). Manufacturing of nanoliposomal extract from Sargassum boveanum algae and investigating its release behavior and antioxidant activity. Food Science & Nutrition, 8(1), 299-310.
[33] Zhao, L., Xiong, H., Peng, H., Wang, Q., Han, D., Bai, C.Q., Liu, Y., Shi, S., and Deng, B. (2011). PEG-coated lyophilized proliposomes: preparation, characterizations and in vitro release evaluation of vitamin E. European Food Research and Technology, 232, 647–654.
[34] Barretto, F.J.D.F.P., Clemente, H.A., Santana, A.L.B.D., and Vasconcelo, M.A.D.S. (2020). Stability of encapsulated and non-encapsulated anthocyanin in yogurt produced with natural dye obtained from Solanum melongena L. bark. Revista Brasileira de Fruticultura, 42(3), 1–13.
[35] Spigno, G., Donsì, F., Amendola, D., Sessa, M., Ferrari, G., and Faveri, D.M.D. (2013). Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. Journal of Food Engineering, 114(2), 207–214.
[36] Hallaj-Nezhadi, S., and Hassan, M. (2013). Nanoliposome-based antibacterial drug delivery. Drug Delivery, 45(12), 581–589.
[37] Wu, K., Zhang, T., Chai, X., Duan, X., He, D., Yu, H., Liu, X., and Tao, Z. (2023). Encapsulation efficiency and functional stability of cinnamon essential oil in modified β-cyclodextrins: in vitro and in silico evidence. Foods, 45(12), 1–19.
[38] Liolios, C.C., Gortzi, O., Lalas, S., Tsaknis, J., and Chinou, I. (2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chemistry, 112(1), 77–83.