[1] Agricultural statistics. (2021). Garden products (3 ed). Ministry of Agriculture Jihad, Deputy of planning and economics “https://www.maj.ir”.
[2] Tepe, T. K., & Tepe, B. (2020). The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices. Heat and Mass Transfer, 56(11), 3047-3057.
[3] Atungulu, G., Nishiyama, Y., & Koide, S. (2004). Electrode configuration and polarity effects on physicochemical properties of electric field treated apples post harvest. Biosystems engineering, 87(3), 313-323.
[4] Cuccurullo, G., Metallo, A., Corona, O., & Cinquanta, L. (2019). Comparing different processing methods in apple slice drying. Part 1. Performance of microwave, hot air and hybrid methods at constant temperatures. Biosystems Engineering, 188, 331-344.
[5] Rajoriya, D., Shewale, S. R., Bhavya, M. L., & Hebbar, H. U. (2020). Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science & Emerging Technologies, 66, 102530.
[6] Cuccurullo, G., Giordano, L., Metallo, A., & Cinquanta, L. (2018). Drying rate control in microwave assisted processing of sliced apples. Biosystems Engineering, 170, 24-30.
[7] Chandran, T. T., Mini, C., & Anith, K. N. (2021). Quality evaluation of edible film coated tomato (Solanum lycopersicum) fruits. Journal of Tropical Agriculture, 58(2).
[8] Kaur, K., & Singh, A. K. (2014). Drying kinetics and quality characteristics of beetroot slices under hot air followed by microwave finish drying. African Journal of Agricultural Research, 9(12), 1036-1044.
[9] Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of food engineering, 44(2), 71-78.
[10] Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41-47.
[11] Pruksarojanakul, P., Prakitchaiwattana, C., Settachaimongkon, S., & Borompichaichartkul, C. (2020). Synbiotic edible film from konjac glucomannan composed of Lactobacillus casei‐01® and Orafti® GR, and its application as coating on bread buns. Journal of the Science of Food and Agriculture, 100(6), 2610-2617.
[12] Suhag, R., Kumar, N., Petkoska, A. T., & Upadhyay, A. (2020). Film formation and deposition methods of edible coating on food products: A review. Food Research International, 136, 109582.
[13] Pavinatto, A., de Almeida Mattos, A. V., Malpass, A. C. G., Okura, M. H., Balogh, D. T., & Sanfelice, R. C. (2020). Coating with chitosan-based edible films for mechanical/biological protection of strawberries. International journal of biological macromolecules, 151, 1004-1011.
[14] Pak, E. S., Ghaghelestani, S. N., & Najafi, M. A. (2020). Preparation and characterization of a new edible film based on Persian gum with glycerol plasticizer. Journal of Food Science and Technology, 57(9), 3284-3294.
[15] Hosseini-Parvar, S. H., Matia-Merino, L., Goh, K. K. T., Razavi, S. M. A., & Mortazavi, S. A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. Journal of food engineering, 101(3), 236-243.
[16] Razavi, S. M. A., Cui, S. W., Guo, Q., & Ding, H. (2014). Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocolloids, 35, 453-462.
[17] Bautista-Baños, S., Hernandez-Lauzardo, A. N., Velazquez-Del Valle, M. G., Hernández-López, M., Barka, E. A., Bosquez-Molina, E., & Wilson, C. L. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop protection, 25(2), 108-118.
[18] Zhu, H., Gulati, T., Datta, A. K., & Huang, K. (2015). Microwave drying of spheres: Coupled electromagnetics-multiphase transport modeling with experimentation. Part I: Model development and experimental methodology. Food and Bioproducts Processing, 96, 314-325.
[19] Mei, Y., Zhao, Y., Yang, J., & Furr, H. C. (2002). Using edible coating to enhance nutritional and sensory qualities of baby carrots. Journal of Food Science, 67(5), 1964-1968.
[20] Zeynali, M., Naji-Tabasi, S., & Farahmandfar, R. (2019). Investigation of basil (Ocimum bacilicum L.) seed gum properties as cryoprotectant for frozen foods. Food Hydrocolloids, 90, 305-312.
[21] Farahmandfar, R., Asnaashari, M., Taheri, A., & Rad, T. K. (2019). Flow behavior, viscoelastic, textural and foaming characterization of whipped cream: Influence of Lallemantia royleana seed, Salvia macrosiphon seed and carrageenan gums. International journal of biological macromolecules, 121, 609-615.
[22] Badawy, M. E., Rabea, E. I., AM El-Nouby, M., Ismail, R. I., & Taktak, N. E. (2017). Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. International Journal of Fruit Science, 17(2), 117-136.
[23] Midilli, A.D.N.A.N., Kucuk, H.A.Y.D.A.R., & Yapar, Z.İ.Y.A. (2002). A new model for single-layer drying. Drying technology, 20(7), 1503-1513.
[24] Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-0301.
[25] Chhinnan, M. S. (1984). Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Transactions of the ASAE, 27(2), 610-0615.
[26] Dandamrongrak, R., Young, G., & Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering, 55(2), 139-146.
[27] Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering, 63(3), 349-359.
[28] Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of food engineering, 66(3), 323-328.
[29] Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar energy, 59(4-6), 121-126.
[30] Farahmandfar, R., Asnaashari, M., & Sayyad, R. (2017). Antioxidant activity and total phenolic content of Capsicum frutescens extracted by supercritical CO2, ultrasound and traditional solvent extraction methods. Journal of Essential Oil Bearing Plants, 20(1), 196-204.
[31] Firouzi, N., Farahmandfar, R., Mohammadzadeh Milani, J., & Motevali, A. (2022). Effect of basil and chitosan coating on drying kinetic, color, texture and antioxidant activity of apple slices: hot air oven and vacuum drying. Journal of food science and technology (Iran), 19(122), 393-406.
[32] Salehi, F., & Kashaninejad, M. (2017). Effect of drying methods on textural and rheological properties of basil seed gum. International Food Research Journal, 24(5).
[33] Satorabi, M., Salehi, F., & Rasouli, M. (2021). Effect of edible coatings on the color and surface changes of apricot slices during drying in infrared system. Food Science and Technology, 18(112), 21-30.
[34] Rajendran, V.; Marikani, A. Materials Science; Tata McGraw-Hill: New Delhi, 2004.
[35] Ozcan-Sinir, G., Ozkan-Karabacak, A., Tamer, C. E., & Copur, O. U. (2018). The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). Food Science and Technology, 39, 475-484.
[36] Oliveira, D., & Silva, K. D. S. (2017). Effect of protein and polysaccharide-based edible coatings on quality of kiwifruit (Actinidia deliciosa) during drying. International Journal of Food Engineering, 13(12).