اثر ترکیبی توان مایکروویو – غلظت پوشش خوراکی بر خصوصیات فیزیکوشیمیایی برش های میوه سیب خشک شده

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
2 گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
چکیده
هدف از این پژوهش، بررسی اثر پوشش­ های خوراکی ریحان، مرو و کیتوزان بر خصوصیات فیزیکوشیمیایی برش­ های خشک­شده میوه سیب در مایکروویو بود. در این پژوهش، برش ­های میوه سیب در سه غلظت (0، 0/5 و 1 درصد) با ریحان، مرو و کیتوزان پوشش ­دهی شدند و تحت تیمار با امواج مایکروویو در توان­ های مختلف (90، 180 و 360 وات) قرار گرفتند. مولفه ­های سینتیک خشک­ کردن، رنگ، بافت و فعالیت آنتی­ اکسیدانی برگه ­های سیب بررسی شد. تجزیه و تحلیل داده ­ها حاکی از آن بود که خشک­ کردن ورقه­ های سیب تنها در محدوده دوره سرعت نزولی اتفاق افتاد. این داده ­ها با 7 مدل تجربی متفاوت برازش شدند که از بین این مدل­ ها، مناسب­ترین مدل برای پوشش­ های صمغ ریحان، مرو و کیتوزان به ترتیب، مدل میدیلی و همکاران، تقریب و ورما بود که میدیلی و همکاران با دقت بیشتری نسبت به سایر مدل­ ها قادر به پیش­بینی محتوی رطوبتی بود. همچنین، مقدار مولفه ­های روشنایی، چسبندگی، پیوستگی و فعالیت آنتی ­اکسیدانی با افزایش غلظت پوشش و توان­ ماکروویو، افزایش اما مقدار قرمزی، زردی، قهوه ­ای شدن، تغییر رنگ کلی و سفتی کاهش یافت. به­ طور کلی، پوشش ­دهی خوراکی یکی از روش­ های نوین که سبب افزایش مدت ­زمان نگه­داری و کیفیت محصول نهایی می ­شود. لذا، تیمار میوه­ ها با استفاده از پوشش های خوراکی برای افزایش کیفیت ظاهری، بهبود رنگ در انتهای فرآیند خشک­ کردن پیشنهاد می­ گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluating combined effect of microwave power - edible coating on physicochemical properties of dried apple slices

نویسندگان English

Salar Karami 1
Reza Farahmandfar 1
Jamshid Farmani 1
Zeynab Raftani Amiri 1
Ali Motevali 2
1 Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Iran
2 Department of Mechanic of Biosystem Engineering, Sari Agricultural Sciences and Natural Resources University, Iran
چکیده English

The aim of this research was to investigate the effect of basil, sage and chitosan edible coatings on the physicochemical properties of microwave-dried apple slices. In this study, apple fruit slices were coated with basil, sage and chitosan in three concentrations (0, 0.5 and 1%) and dried at different microwave powers (90, 180 and 360 W). The drying kinetics, color, texture and antioxidant activity of apple slices were investigated. The analysis of the data indicated that the drying of the apple slices happened only in the range of the descending speed period. These data were fitted with 7 different experimental models, among the models, the most suitable models for basil, sage and chitosan coatings were Midili, Approximation of diffusion and Verma, respectively. Midili was able to predict moisture content more accurately than other models. Also, the amount of brightness, adhesivenes, cohesiveness and antioxidant activity increased with the increase of coating concentration and microwave power, but the amount of redness, yellowness, browning, general color change and hardness decreased. In general, edible coating is one of the new methods that increases the shelf life and quality of the final product. Therefore, it is recommended to treat fruits using edible coatings to increase the appearance quality and improve the color at the end of the drying process.

کلیدواژه‌ها English

Microwave
Drying kinetics
Antioxidant activity
texture
[1] Agricultural statistics. (2021). Garden products (3 ed). Ministry of Agriculture Jihad, Deputy of planning and economics “https://www.maj.ir”.
[2] Tepe, T. K., & Tepe, B. (2020). The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices. Heat and Mass Transfer, 56(11), 3047-3057.‏
[3] Atungulu, G., Nishiyama, Y., & Koide, S. (2004). Electrode configuration and polarity effects on physicochemical properties of electric field treated apples post harvest. Biosystems engineering, 87(3), 313-323.‏
[4] Cuccurullo, G., Metallo, A., Corona, O., & Cinquanta, L. (2019). Comparing different processing methods in apple slice drying. Part 1. Performance of microwave, hot air and hybrid methods at constant temperatures. Biosystems Engineering, 188, 331-344.‏
[5] Rajoriya, D., Shewale, S. R., Bhavya, M. L., & Hebbar, H. U. (2020). Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science & Emerging Technologies, 66, 102530.‏
[6] Cuccurullo, G., Giordano, L., Metallo, A., & Cinquanta, L. (2018). Drying rate control in microwave assisted processing of sliced apples. Biosystems Engineering, 170, 24-30.‏
[7] Chandran, T. T., Mini, C., & Anith, K. N. (2021). Quality evaluation of edible film coated tomato (Solanum lycopersicum) fruits. Journal of Tropical Agriculture, 58(2).‏
[8] Kaur, K., & Singh, A. K. (2014). Drying kinetics and quality characteristics of beetroot slices under hot air followed by microwave finish drying. African Journal of Agricultural Research, 9(12), 1036-1044.‏
[9] Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of food engineering, 44(2), 71-78.‏
[10] Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41-47.‏
[11] Pruksarojanakul, P., Prakitchaiwattana, C., Settachaimongkon, S., & Borompichaichartkul, C. (2020). Synbiotic edible film from konjac glucomannan composed of Lactobacillus casei‐01® and Orafti® GR, and its application as coating on bread buns. Journal of the Science of Food and Agriculture, 100(6), 2610-2617.‏
[12] Suhag, R., Kumar, N., Petkoska, A. T., & Upadhyay, A. (2020). Film formation and deposition methods of edible coating on food products: A review. Food Research International, 136, 109582.‏
[13] Pavinatto, A., de Almeida Mattos, A. V., Malpass, A. C. G., Okura, M. H., Balogh, D. T., & Sanfelice, R. C. (2020). Coating with chitosan-based edible films for mechanical/biological protection of strawberries. International journal of biological macromolecules, 151, 1004-1011.‏
[14] Pak, E. S., Ghaghelestani, S. N., & Najafi, M. A. (2020). Preparation and characterization of a new edible film based on Persian gum with glycerol plasticizer. Journal of Food Science and Technology, 57(9), 3284-3294.‏
[15] Hosseini-Parvar, S. H., Matia-Merino, L., Goh, K. K. T., Razavi, S. M. A., & Mortazavi, S. A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. Journal of food engineering, 101(3), 236-243.‏
[16] Razavi, S. M. A., Cui, S. W., Guo, Q., & Ding, H. (2014). Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocolloids, 35, 453-462.‏
[17] Bautista-Baños, S., Hernandez-Lauzardo, A. N., Velazquez-Del Valle, M. G., Hernández-López, M., Barka, E. A., Bosquez-Molina, E., & Wilson, C. L. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop protection, 25(2), 108-118.
[18] Zhu, H., Gulati, T., Datta, A. K., & Huang, K. (2015). Microwave drying of spheres: Coupled electromagnetics-multiphase transport modeling with experimentation. Part I: Model development and experimental methodology. Food and Bioproducts Processing, 96, 314-325.‏
[19] Mei, Y., Zhao, Y., Yang, J., & Furr, H. C. (2002). Using edible coating to enhance nutritional and sensory qualities of baby carrots. Journal of Food Science, 67(5), 1964-1968.‏
[20] Zeynali, M., Naji-Tabasi, S., & Farahmandfar, R. (2019). Investigation of basil (Ocimum bacilicum L.) seed gum properties as cryoprotectant for frozen foods. Food Hydrocolloids, 90, 305-312.
[21] Farahmandfar, R., Asnaashari, M., Taheri, A., & Rad, T. K. (2019). Flow behavior, viscoelastic, textural and foaming characterization of whipped cream: Influence of Lallemantia royleana seed, Salvia macrosiphon seed and carrageenan gums. International journal of biological macromolecules, 121, 609-615.
[22] Badawy, M. E., Rabea, E. I., AM El-Nouby, M., Ismail, R. I., & Taktak, N. E. (2017). Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. International Journal of Fruit Science, 17(2), 117-136.
[23] Midilli, A.D.N.A.N., Kucuk, H.A.Y.D.A.R., & Yapar, Z.İ.Y.A. (2002). A new model for single-layer drying. Drying technology, 20(7), 1503-1513.
[24] Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-0301.
[25] Chhinnan, M. S. (1984). Evaluation of selected mathematical models for describing thin-layer drying of in-shell pecans. Transactions of the ASAE, 27(2), 610-0615.
[26] Dandamrongrak, R., Young, G., & Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering, 55(2), 139-146.
[27] Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of food engineering, 63(3), 349-359.
[28] Simal, S., Femenia, A., Garau, M. C., & Rosselló, C. (2005). Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of food engineering, 66(3), 323-328.
[29] Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar energy, 59(4-6), 121-126.
[30] Farahmandfar, R., Asnaashari, M., & Sayyad, R. (2017). Antioxidant activity and total phenolic content of Capsicum frutescens extracted by supercritical CO2, ultrasound and traditional solvent extraction methods. Journal of Essential Oil Bearing Plants, 20(1), 196-204.
[31] Firouzi, N., Farahmandfar, R., Mohammadzadeh Milani, J., & Motevali, A. (2022). Effect of basil and chitosan coating on drying kinetic, color, texture and antioxidant activity of apple slices: hot air oven and vacuum drying. Journal of food science and technology (Iran), 19(122), 393-406.
[32] Salehi, F., & Kashaninejad, M. (2017). Effect of drying methods on textural and rheological properties of basil seed gum. International Food Research Journal, 24(5).
[33] Satorabi, M., Salehi, F., & Rasouli, M. (2021). Effect of edible coatings on the color and surface changes of apricot slices during drying in infrared system. Food Science and Technology, 18(112), 21-30.‏
[34] Rajendran, V.; Marikani, A. Materials Science; Tata McGraw-Hill: New Delhi, 2004.
[35] Ozcan-Sinir, G., Ozkan-Karabacak, A., Tamer, C. E., & Copur, O. U. (2018). The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). Food Science and Technology, 39, 475-484.‏
[36] Oliveira, D., & Silva, K. D. S. (2017). Effect of protein and polysaccharide-based edible coatings on quality of kiwifruit (Actinidia deliciosa) during drying. International Journal of Food Engineering, 13(12).